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Abstract We study the one-dimensional Burgers equation in the inviscid limit for Brown-
ian initial velocity (i.e. the initial velocity is a two-sided Brownian motion that starts from
the origin x = 0). We obtain the one-point distribution of the velocity field in closed analyt-
ical form. In the limit where we are far from the origin, we also obtain the two-point and
higher-order distributions. We show how they factorize and recover the statistical invariance
through translations for the distributions of velocity increments and Lagrangian increments.
We also derive the velocity structure functions and we recover the bifractality of the in-
verse Lagrangian map. Then, for the case where the initial density is uniform, we obtain
the distribution of the density field and its n-point correlations. In the same limit, we derive
the n-point distributions of the Lagrangian displacement field and the properties of shocks.
We note that both the stable-clustering ansatz and the Press-Schechter mass function, that
are widely used in the cosmological context, happen to be exact for this one-dimensional
version of the adhesion model.

Keywords Inviscid Burgers equation · Turbulence · Cosmology: large-scale structure
of the universe

1 Introduction

The Burgers equation [10] is a very popular nonlinear evolution equation that appears in
many physical problems, see [6] for a recent review. It was first introduced as a simplified
model of fluid turbulence, as it shares the same hydrodynamical (advective) nonlinearity and
several conservation laws with the Navier-Stokes equation. Even though it was shown later
on by [28] and [13] that it can be explicitly integrated and lacks the chaotic character as-
sociated with actual turbulence, it still retains much interest for hydrodynamical studies. In
particular, it can serve as a useful benchmark to test various approximation schemes devised
for turbulence studies, since the nonlinearity is the same for both dynamics [16]. On the
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other hand, it has appeared in other physical situations, such as the propagation of nonlinear
acoustic waves in non-dispersive media [22], the study of disordered systems and pinned
manifolds [30], or the formation of large-scale structures in cosmology [25, 51]. There, in
the limit of vanishing viscosity, it is known as the “adhesion model” and it provides a good
description of the large-scale filamentary structure of the cosmic web [33]. In this context,
one is interested in the statistical properties of the dynamics, starting with random Gaussian
initial conditions [26, 29] (i.e. “decaying Burgers turbulence” in the hydrodynamical con-
text). Moreover, in addition to the velocity field, one is also interested in the properties of
the density field generated by this dynamics, starting with an initial uniform density.

This problem has led to many studies, focusing on power-law initial spectra (fractional
Brownian motion), especially for the two peculiar cases of white-noise initial velocity
[10, 17, 29, 41] or Brownian motion initial velocity [9, 41, 43]. The initial velocity fluc-
tuations are dominated by short wavelengths in the former case and by large wavelengths in
the latter case. In the present Universe, where the power spectrum is not a power law and
converges at both ends, the velocity fluctuations are governed by scales that are somewhat
larger than those where structures have already formed (thus the variance of the velocity
field is still set by the linear theory) and this scale ratio was larger in the past (as the size
of nonlinear structures was smaller). In this sense the case of Brownian initial conditions is
closer to the cosmological scenario. From the viewpoint of hydrodynamics, this is also an
interesting configuration since in many hydrodynamical systems the power is generated by
the larger scales. For instance, the Kolmogorov spectrum of turbulence, E(k) ∝ k−5/3, dis-
plays such an infrared divergence. Thus, the case of Brownian initial velocity was recently
used in [19] to address the issue of local homogeneity

In this article, we revisit the one-dimensional Burgers dynamics with two-sided Brown-
ian initial velocity. In the spirit of the approach of [17], using analysis methods (Laplace
transforms) we obtain closed analytical results for n-point distributions (mostly in the limit
where we are far from the origin of the initial Brownian motion if n ≥ 2). We check that our
results agree with already known properties. In particular, we recover the property, derived
by [9] through probabilistic tools for the one-sided Brownian initial velocity, that incre-
ments of the inverse Lagrangian map are independent and homogeneous. In our case this
only holds for particles that are on the same side of the origin. We pay attention to issues
that arise in the hydrodynamical context (e.g., velocity structure functions, Lagrangian dis-
placement field) as well as the cosmological context (e.g., statistics of the density field, mass
function of the collapsed structures associated with shocks). In particular, we compare our
exact results with phenomenological models that are often used to describe the cosmological
dynamics.

We first describe in Sect. 2 the initial Brownian conditions and the standard geomet-
rical interpretation in terms of parabolas of the Hopf-Cole solution of the dynamics [10].
Adapting to our case the method presented in [17], this will allow us to express all statis-
tical properties in terms of the transition kernel associated with Brownian particles moving
above parabolic absorbing barriers. We present this propagator in Sect. 3, decomposed over
a continuous set of eigenfunctions built from the Airy function (whereas the white-noise
case leads to a discrete spectrum, that is also built from Airy functions). Then, we derive
closed analytical expressions for the one-point velocity distribution px(v) in Sect. 4, as well
as the distribution, px(q), of the initial Lagrangian position q of the particle that is located
at the position x at time t . Next, we study the two-point and higher-order distributions in
Sect. 5, and we obtain simple analytical results in the limit where all particles are far from
the origin. This allows us to derive the distribution of the density field in Sect. 6, for the case
of a uniform initial density. Next, we consider the statistics of the Lagrangian displacement
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field in Sect. 7. In the same limit where the particles are far from the origin, we obtain the
n-point distributions, pqi

(xi), of the positions xi at time t of the particles that were initially
at positions qi . We also derive the probability pshock

q that two particles initially separated by
a distance q have coalesced into a single shock by time t . Finally, we obtain in Sect. 8 the
mass function of shocks and their spatial distribution.

The reader who is not interested in the technical details of our derivations may directly
go to Sect. 5 to survey most of our practical results.

2 Initial Conditions and Geometrical Solution

We consider the one-dimensional Burgers equation for the velocity field v(x, t) in the limit
of zero viscosity,

∂v

∂t
+ v

∂v

∂x
= ν

∂2v

∂x2
with ν → 0+. (1)

As is well-known [13, 28], introducing the velocity potential ψ(x, t) and making the change
of variable ψ(x, t) = −2ν ln θ(x, t) transforms the nonlinear Burgers equation into the lin-
ear heat equation. This gives the explicit solution

v(x, t) = ∂ψ

∂x
with ψ(x, t) = −2ν ln

∫ ∞

−∞

dq√
4πνt

exp

[
− (x − q)2

4νt
− ψ0(q)

2ν

]
, (2)

where we introduced the initial condition ψ0(q) = ψ(q, t = 0). Then, in the limit ν → 0+
the steepest-descent method gives

ψ(x, t) = min
q

[
ψ0(q) + (x − q)2

2t

]
and v(x, t) = x − q(x, t)

t
, (3)

where we introduced the Lagrangian coordinate q(x, t) defined by

ψ0(q) + (x − q)2

2t
is minimum at the point q = q(x, t). (4)

The Eulerian locations x where there are two solutions q− < q+ to the minimization prob-
lem (4) correspond to shocks (and all the matter initially between q− and q+ is gathered
at x). The application q �→ x(q, t) is usually called the Lagrangian map, and x �→ q(x, t)

the inverse Lagrangian map (which is discontinuous at shock locations). For the case of
Brownian initial velocity that we consider in this paper, it is known that the set of regu-
lar Lagrangian points has a Hausdorff dimension of 1/2 [43], whereas shock locations are
dense in Eulerian space [41, 43].

In this article, we take for the initial velocity field v0(q) a bilateral Brownian motion
starting from the origin v0(0) = 0, and we also normalize the potential ψ0 by ψ0(0) = 0.
Thus, introducing a Gaussian white noise ξ(q), we can express the initial conditions by

v0(q) =
∫ q

0
dq ′ξ(q ′), ψ0(q) =

∫ q

0
dq ′

∫ q ′

0
dq ′′ξ(q ′′). (5)

All initial fields are Gaussian and fully determined by their two-point correlation, which we
normalize by

〈ξ(q)〉 = 0, 〈ξ(q)ξ(q ′)〉 = Dδ(q − q ′), (6)
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where 〈. . .〉 is the average over all realizations of ξ . This gives for instance

〈v0(q1)v0(q2)〉 = Dq1, 〈ψ0(q1)ψ0(q2)〉 = D

2

[
q2

1q2 − q3
1

3

]
, for 0 ≤ q1 ≤ q2, (7)

and for the initial velocity distribution at location q ,

t = 0 : pq(v) = 1√
2πσv0

e
−v2/(2σ 2

v0
) with σ 2

v0
(q) = Dq. (8)

Note that the initial fields over the two sides q < 0 and q > 0 are independent. The initial
velocity v0(q) is not homogeneous, since the origin q = 0 clearly plays a special role, but it
has homogeneous increments, as seen from the equality,

for any q1, q2 : v0(q2) − v0(q1) =
∫ q2

q1

dqξ(q), 〈[v0(q2) − v0(q1)]2〉 = D|q2 − q1|.
(9)

Then, the energy spectrum E0(k) of the initial velocity field is

E0(k) = D

4π
k−2, with 〈[v0(q2) − v0(q1)]2〉 = 2

∫ ∞

−∞
dk(1 − eik(q2−q1))E0(k). (10)

Thanks to the scale invariance of the Brownian motion, the scaled initial potential ψ0(λq)

has the same probability distribution as λ3/2ψ0(q), for any λ > 0. Then, using the explicit
solution (3) we obtain the scaling laws

ψ(x, t)
law= t3ψ(x/t2,1), v(x, t)

law= tv(x/t2,1), q(x, t)
law= t2q(x/t2,1), (11)

where
law= means that both sides have the same probability distribution. Thus, any equal-time

statistics at a given time t > 0 can be expressed in terms of the same quantity at the time
t = 1 through appropriate rescalings. In this article we only investigate equal-time statistics,
so that t can be seen as a mere parameter in the explicit solution (2) from which we derive
our results.

In the cosmological context, the time t in the Burgers equation (1) actually stands for the
linear growing mode D+(t) of the density fluctuations, the spatial coordinate x is a comov-
ing coordinate (that follows the uniform Hubble expansion) and, up to a time-dependent
factor, the velocity v is the peculiar velocity (where the Hubble expansion has been sub-
tracted), see [25, 51]. In these coordinates, the evolution of the density field is still given
by the continuity equation (106) below, where the density ρ is the comoving density. If we
take ν = 0, that is we remove the right hand side in (1), this is the well-known Zeldovich
approximation [47, 52], where particles always keep their initial velocity and merely follow
straight trajectories. The diffusive term of (1) is then added as a phenomenological device to
prevent particles from escaping to infinity after crossing each other and to mimic the grav-
itational trapping of particles within the potential wells formed by the overdensities [25].
Of course, this cannot describe the inner structure of collapsed objects (e.g., galaxies) but it
provides a good description of the large-scale structure of the cosmic web [33].

As is well-known [10], the minimization problem (4) has a nice geometrical solution.
Indeed, let us consider the downward1 parabola Px,c(q) centered at x and of maximum c,

1In the literature one usually defines the velocity potential as v = −∂xψ , which leads to upward parabolas.
Here we prefer to define v = ∂xψ to simplify the interpretation of the process (q,ψ0, v0) in terms of the
dynamics of a Brownian particle.
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i.e. of vertex (x, c), of equation

Px,c(q) = − (q − x)2

2t
+ c. (12)

Then, starting from below with a large negative value of c, such that the parabola is every-

where well below ψ0(q) (this is possible thanks to the scaling ψ0(λq)
law= λ3/2ψ0(q) which

shows that ψ0(q) only grows as |q|3/2 at large |q|), we increase c until the two curves touch
one another. Then, the abscissa of the point of contact is the Lagrangian coordinate q(x, t)

and the potential is given by ψ(x, t) = c. (We show below in Fig. 1 the case where the
Lagrangian coordinate q ′(x, t) is somewhere in the range 0 ≤ q ′ ≤ q .)

3 Transition Kernel with Parabolic Absorbing Barrier

For the Brownian initial conditions (5), the process q �→ {ψ0, v0} is Markovian, going from
q = 0 towards positive or negative values. Then, following the approach of [17] (where it
was applied to white-noise initial velocity), from the geometrical construction (12) we can
see that a key quantity is the conditional probability density Kx,c(q1,ψ1, v1;q2,ψ2, v2) for
the Markov process {ψ0(q), v0(q)}, starting from {ψ1, v1} at q1 ≥ 0, to end at {ψ2, v2} at
q2 ≥ q1 ≥ 0, while staying above the parabolic barrier, ψ0(q) > Px,c(q), for q1 ≤ q ≤ q2. It
obeys the advective-diffusion equation

[
∂

∂q2
+ v2

∂

∂ψ2

]
Kx,c(q1,ψ1, v1;q2,ψ2, v2) = D

2

∂2

∂v2
2

Kx,c(q1,ψ1, v1;q2,ψ2, v2) (13)

over the domain ψ ≥ Px,c(q), with the initial condition at q2 = q1

Kx,c(q1,ψ1, v1;q1,ψ2, v2) = δ(ψ2 − ψ1)δ(v2 − v1), (14)

and the boundary condition

Kx,c(q1,ψ1, v1;q2,ψ2, v2) = 0 at ψ2 = Px,c(q2) for v2 ≥ dPx,c

dq
(q2). (15)

Equation (13) is also the Klein-Kramers equation for the distribution function P (x, v; t)
of Brownian particles, in the limit of zero external force and zero friction coefficient but
finite diffusion coefficient, where we identify the position, velocity and time coordinates
as {x, v; t} = {ψ2, v2;q2}. The boundary condition (15) simply means that particles cannot
come back from the absorbing region (i.e. curves that cross the parabola are “lost” and do
not contribute to the probability density Kx,c).

In the case of white-noise initial velocity studied in [17], the velocity potential ψ itself is
a Brownian motion so that the relevant propagator only involves one dependent variable, ψ ,
as Kw.n.

x,c (q1,ψ1;q2,ψ2). In our case, since ψ is now the integral of the Brownian motion v,
the propagator Kx,c introduced in (13) involves the two dependent variables v and ψ . Thus,
we have a diffusion in a two-dimensional {ψ,v}-space rather than the one-dimensional ψ -
space as in [17]. As we shall see below, the propagator Kx,c involves an expansion over a
continuous spectrum of eigenfunctions that are built from the Airy function, whereas the
white-noise case leads to a different expansion over eigenfunctions that are still built from
the Airy function but form a discrete spectrum, see [17].
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The conditional probability density Kx,c associated with the left-handed Brownian mo-
tion q2 ≤ q1 ≤ 0 can be obtained from the symmetry q → −q as:

0 ≤ q1 ≤ q2 : Kx,c(−q1,ψ1, v1;−q2,ψ2, v2) = K−x,c(q1,ψ1,−v1;q2,ψ2,−v2), (16)

hence we only need consider (13) for 0 ≤ q1 ≤ q2. To solve this equation it is convenient to
make the change of variables

Kx,c(q1,ψ1, v1;q2,ψ2, v2) = K(q1, y1,w1;q2, y2,w2), (17)

with

y = ψ − Px,c(q) = ψ + (q − x)2

2t
− c, w = v − dPx,c

dq
(q) = v + q − x

t
, (18)

to obtain a simpler boundary at the fixed vertical half-line (y = 0,w ≥ 0) in the (y,w) half-
plane for K, y ≥ 0 and −∞ < w < ∞, instead of the parabolic boundary for K . From (13)
the kernel K satisfies the equation with constant external force

[
∂

∂q2
+ w2

∂

∂y2
+ 1

t

∂

∂w2

]
K = D

2

∂2

∂w2
2

K. (19)

Then, making the transformation

K(q1, y1,w1;q2, y2,w2) = 2

D
G(τ ; r1, u1; r2, u2) exp

[
w2 − w1

Dt
− q2 − q1

2Dt2

]
, (20)

with

τ = q2 − q1, r =
√

2

D
y, u =

√
2

D
w, (21)

we obtain the simpler advective-diffusion equation for τ ≥ 0 and x ≥ 0,

∂G

∂τ
+ u2

∂G

∂r2
= ∂2G

∂u2
2

, (22)

with the initial and boundary conditions

G(0; r1, u1; r2, u2) = δ(r2 − r1)δ(u2 − u1), G(τ ; r1, u1;0, u2) = 0 for u2 ≥ 0. (23)

Thus, G(τ ; r1, u1; r2, u2) is the conditional probability density of Brownian particles with
unit diffusion coefficient and absorbing barrier at r = 0. This quantity was obtained in [11]
and we briefly recall below his procedure using our notations. We first take the Laplace
transform of G as

G̃(s; r1, u1; r2, u2) =
∫ ∞

0
dτe−sτG(τ ; r1, u1; r2, u2), (24)

hence (22) gives

(
s + u2

∂

∂r2
− ∂2

∂u2
2

)
G̃(s; r1, u1; r2, u2) = δ(r2 − r1)δ(u2 − u1). (25)
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Next, to obtain an ordinary differential equation, it is convenient to expand over the eigen-
functions e−ν3r2gs,ν(u2) associated with Schrödinger’s equation

(
s − ν3u − d2

du2

)
gs,ν(u) = 0, whence gs,ν(u) = Ai

[
−νu + s

ν2

]
, (26)

using the fact that the standard Airy function Ai(x) is the only solution of Ai′′(x) = xAi(x)

that vanishes at both ends x → ±∞ [1]. We recall in Appendix A some useful properties
of this entire function. Using the integral representation (165), we obtain the orthogonality
property

∫ ∞

−∞
duuAi

[
−νu + s

ν2

]
Ai

[
−ν ′u + s

ν ′2

]
= 1

3ν
δ(ν − ν ′), (27)

and the closure relation
∫ ∞

−∞
dν3νAi

[
−νu + s

ν2

]
Ai

[
−νu′ + s

ν2

]
= 1

u
δ(u − u′). (28)

Therefore, we can see from (26)–(28) that (25) has the particular solution

G̃0(s; r1, u1; r2, u2) =
∫ ∞

−∞
dνe−ν3(r2−r1)3νAi

[
−νu1 + s

ν2

]
Ai

[
−νu2 + s

ν2

]

× [−θ(−ν)θ(r1 − r2) + θ(ν)θ(r2 − r1)
]

(29)

where θ is the Heaviside function. We can check that G̃0 vanishes for |r| → ∞ and for
|u| → ∞. Then, since we have not taken into account the boundary condition at r2 = 0 of
(23) yet, G̃0 is the Laplace transform of the probability density of Brownian particles over
the unbounded plane (r, u) (thus G̃0 only depends on the length |r2 − r1|). Note that the
solution to this unbounded problem is well known to be the Gaussian [11]

G0(τ ; r1, u1; r2, u2) =
√

3

2πτ 2
e

− 3
τ3 (r2−r1−u1τ)2+ 3

τ2 (r2−r1−u1τ)(u2−u1)− 1
τ (u2−u1)2

, (30)

as can be checked by substitution into (22). Therefore, (30) is the inverse Laplace transform
of (29).

Next, in order to satisfy the second constraint (23), we must subtract to G̃0 an appropriate
solution G̃1 of the homogeneous form of (25). From (26), we can see that G̃1 can be written
as a combination of eigenfunctions e−μ3r2gs,μ(u2), that must be restricted to μ > 0 to ensure
that G̃ vanishes for r2 → +∞. Moreover, for r2 = 0 only the first part θ(−ν)θ(r1 − r2)

contributes to G̃0 in (29). Therefore, to compensate for this term at r2 = 0 for u2 ≥ 0, we
must look for a function G̃1 of the form

G̃1(s; r1, u1; r2, u2) =
∫ ∞

0
dνe−ν3r1 3νAi

[
νu1 + s

ν2

]
φs,ν(r2, u2), (31)

where the function φs,ν(r, u) can be written as

φs,ν(r, u) =
∫ ∞

0
dμWs,ν(μ)e−μ3rAi

[
−μu + s

μ2

]
, (32)
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with some weight Ws,ν(μ), and satisfies the constraint

φs,ν(r = 0, u) = Ai

[
νu + s

ν2

]
for u ≥ 0. (33)

This is a half-range problem as we must decompose a given function (here Ai[νu + s/ν2])
over half the domain (u ≥ 0) using only half of the eigenfunctions gs,μ(u). Using the results
of [31], who studied the Klein-Kramers equation, and taking the limit of zero friction but
non-zero diffusion, [11] obtained:

ν > 0 : φs,ν(r, u) =
∫ ∞

0

dμ

2π

3ν1/2μ3/2

ν3 + μ3
e− 2

3 s3/2(ν−3+μ−3)e−μ3rAi

[
−μu + s

μ2

]
. (34)

Substituting into (31), we obtain for the solution G̃ of (25), with the boundary condi-
tions (23),

G̃ = G̃0 − G̃1, with (35)

G̃1 =
∫ ∞

0

dνdμ

2π

9ν3/2μ3/2

ν3 + μ3
e− 2

3 s3/2(ν−3+μ−3)e−ν3r1−μ3r2 Ai

[
νu1 + s

ν2

]
Ai

[
−μu2 + s

μ2

]
.

(36)
We describe in Appendix B how the solution (34) can be directly obtained for the half-range
expansion problem (32)–(33), associated with the Brownian dynamics (22), rather than first
solving the problem associated with the Klein-Kramers dynamics and next taking the limit
of zero friction, see (188). This also allows us to derive the more general identities (187),
(189), that we need in the following sections.

We can see from the explicit expressions (29), (36), that the kernel G also satisfies the
backward evolution equations (compare with (22), (25))

(
∂

∂τ
− u1

∂

∂r1
− ∂2

∂u2
1

)
G(τ ; r1, u1; r2, u2) = 0, (37)

(
s − u1

∂

∂r1
− ∂2

∂u2
1

)
G̃(s; r1, u1; r2, u2) = δ(r2 − r1)δ(u2 − u1), (38)

as well as the boundary condition (compare with (23))

G(τ ;0, u1; r2, u2) = 0 for u1 ≤ 0. (39)

Equation (39) merely states that the trajectory r(τ ) starting on the absorbing barrier at r1 = 0
must start in the upward direction u1 > 0 not to be immediately absorbed.

For later calculations we also need two kernels � and H that are derived from G. Thus,
we define the propagator �, that will be associated with Brownian particles that come within
a small distance ε from the parabolic absorbing barrier, by

�(τ ; r1, u1; r2, u2) = lim
ε→0

1

ε
[G(τ ; r1 + ε,u1; r2 + ε,u2) − G(τ ; r1, u1; r2, u2)]. (40)

From (29) and (36) we have for its Laplace transform �̃

�̃(s; r1, u1; r2, u2) =
∫ ∞

0

dνdμ

2π
9ν3/2μ3/2e− 2

3 s3/2(ν−3+μ−3)e−ν3r1−μ3r2
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× Ai

[
νu1 + s

ν2

]
Ai

[
−μu2 + s

μ2

]
. (41)

Next, we define the kernel H∞(r1, u1), associated with Brownian particles that stay forever
above the parabolic absorbing barrier, by

H∞(r1, u1) = lim
τ→+∞ e−τ/γ 2

H(τ ; r1, u1), (42)

with

H(τ ; r1, u1) =
∫ ∞

0
dr2

∫ ∞

−∞
du2e

u2/γ G(τ ; r1, u1; r2, u2). (43)

Using (29) and (36), and the property (172), we obtain after integration over r2 and u2 for
the Laplace transform H̃ ,

H̃ (s; r1, u1) =
∫ ∞

−∞
dν

3

ν3
Ai

[
−νu1 + s

ν2

]
e

( s
γ − 1

3γ 3 )/ν3[
θ(ν) − θ(−ν)(1 − eν3r1)

]

−
∫ ∞

0

dνdμ

2π

9ν3/2μ−5/2

ν3 + μ3
e− 2

3 s3/2(ν−3+μ−3)e−ν3r1 Ai

[
νu1 + s

ν2

]
e

( s
γ − 1

3γ 3 )/μ3

.

(44)

The behavior for τ → ∞ of H(τ ; r1, u1) is determined by the rightmost singularity of H̃ ,
which is located at s = 1/γ 2. At this point, the first integral in (44) diverges for ν → 0+
whereas the second integral diverges for μ → 0+. Therefore, the singularity is governed by
the behavior of the integrand for ν → 0+ and μ → 0+, so that we can expand the first Airy
function and the ratio 1/(ν3 + μ3), which yields

s → γ −2 : H̃ ∼ 1

s − γ −2

{
eu1/γ −

∫ ∞

0

dν√
π

3ν−3/2e− 2
3 ν−3−ν3r1/γ 3

Ai

[
ν
u1

γ
+ 1

ν2

]}
. (45)

This gives for the function H∞(r1, u1):

H∞(r1, u1) = eu1/γ −
∫ ∞

0

dν√
π

3ν−3/2e− 2
3 ν−3−ν3r1/γ 3

Ai

[
ν
u1

γ
+ 1

ν2

]
. (46)

Finally, using the transformations (17) and (20), we obtain in terms of the original vari-
ables

Kx,c(q1,ψ1, v1;q2,ψ2, v2)dψ2dv2 = e−τ/γ 2+(u2−u1)/γ G(τ ; r1, u1; r2, u2)dr2du2, (47)

with

τ = γ 2(Q2 −Q1), ri = 2γ 3

[
�i + (Qi − X)2

2
−C

]
, ui = 2γ (Vi +Qi −X). (48)

Here we introduced the dimensionless spatial coordinates (which we shall note by capital
letters in this article)

Q = q

γ 2
= q

2Dt2
, X = x

γ 2
= x

2Dt2
, with γ = √

2Dt, (49)



598 P. Valageas

and the dimensionless velocity

V = tv

γ 2
= v

2Dt
, whence X = Q + V for regular points. (50)

In a similar fashion, the dimensionless velocity potential coordinates in (48) are

� = tψ

γ 4
and C = tc

γ 4
. (51)

Next, from (42) the kernel associated with Brownian particles that remain forever above the
parabola Px,c reads as

lim
q2→+∞

∫
dψ2dv2Kx,c(q1,ψ1, v1;q2,ψ2, v2) = e−u1/γ H∞(r1, u1), (52)

whereas the propagator associated with Brownian particles that come within a small distance
δc from the parabolic absorbing barrier is from (40)

lim
δc→0

1

δc
[Kx,c(q1,ψ1, v1;q2,ψ2, v2) − Kx,c+δc(q1,ψ1, v1;q2,ψ2, v2)]dψ2dv2

= 2
t

γ
e−τ/γ 2+(u2−u1)/γ �(τ ; r1, u1; r2, u2)dr2du2. (53)

4 One-Point Distributions

4.1 Results for Arbitrary Eulerian Location x

In this section we consider the one-point velocity distribution px(v) at the Eulerian lo-
cation x. From the explicit solution (3), it can be derived from the probability distribu-
tion px(q) of the Lagrangian coordinate q(x, t). Thus, we have from (3)

px(v) = tpx(q) and q = x − vt, (54)

where we note px(v) and px(q) the probability distributions of the velocity v and of the
Lagrangian coordinate q , at the Eulerian location x and time t . Here we used the property
that q(x, t) is well defined for any x except over a set of zero measure in Eulerian space
associated with shocks [41].

Then, from the geometrical construction (12), we are led to consider the bivariate prob-
ability distribution, px(0 ≤ q ′ ≤ q, c)dc, that the first contact point of the potential ψ0(q

′)
with the family of downward parabolas Px,c(q

′), with c increasing from −∞, occurs at an
abscissa q ′ in the range 0 ≤ q ′ ≤ q , with a parabola of height between c and c + dc. This
will give us in turn the cumulative distribution px(0 ≤ q ′ ≤ q) by integrating over c. Then,
for q ≥ 0, we can write this probability distribution as

px(0 ≤ q ′ ≤ q, c)dc = lim
q±→±∞

∫
dψ−dv−dψdvdψ+dv+Kx,c(0,0,0;q−,ψ−, v−)

× [Kx,c(0,0,0;q,ψ,v) − Kx,c+dc(0,0,0;q,ψ,v)]
× Kx,c(q,ψ, v;q+,ψ+, v+), (55)
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Fig. 1 (Color online) Geometrical interpretation of the initial conditions ψ0(q ′′) associated with the prob-
ability px(0 ≤ q ′ ≤ q, c)dc. The Brownian curve ψ0(q ′′) is everywhere above the parabola Px,c and goes
below Px,c+dc somewhere in the range 0 ≤ q ′′ ≤ q . From the constraints ψ0(0) = 0 and ψ ′

0(0) = 0, see (5),
it goes through the origin with an horizontal tangent. To obtain the cumulative probability, px(0 ≤ q ′ ≤ q),
we must then integrate over the height c of the parabola

where we used the Markovian character of the process q �→ {ψ,v}. Thus, we could factorize
in (55) the probability px(0 ≤ q ′ ≤ q, c)dc into three terms, which correspond to the prob-
abilities that i) ψ0(q

′) stays above Px,c for q ′ < 0, ii) ψ0(q
′) stays above Px,c, but does not

everywhere remain above Px,c+dc, over the range 0 ≤ q ′ ≤ q , while reaching an arbitrary
value {ψ,v} at q , over which we will integrate, and iii) ψ0(q

′) stays above Px,c for q ′ > q .
We show in Fig. 1 the geometrical interpretation of (55) (where we did not try to draw an
actual Brownian curve ψ0(q) which has no finite second-derivative).

We can easily check that in the limit x → +∞ and q → +∞ with q 
 x, the integral
over c of (55) gives unity as it should. It is convenient to first compute cumulative proba-
bilities as in (55) and to take the derivatives afterwards to derive the probability densities.
This ensures that probabilities are well normalized and it avoids coming across ill-defined
expressions. Indeed, since the curve ψ0(q) has a continuous derivative, it is tangent to the
parabola Px,c at the first contact point. Then, this point corresponds to r = 0 and u = 0 in
terms of the reduced variables (21), where the Brownian kernels are singular. For instance,
the expression (29) is not well defined if we naively put r1 = r2 = 0. Other ambiguities or
seemingly divergent quantities appear if we try to directly compute probability densities by
using Taylor expansions.

Then, using the relations (47)–(53), we obtain

px(0 ≤ q ′ ≤ q, r0)dr0 = e−q/γ 2
dr0

∫
drduH∞(r0, û)�(q; r0,−û; r, u)H∞(r, u), (56)

where we defined

û =
√

2

D

x

t
= 2x

γ
. (57)

Using the results of Sect. 3, the integration over r and r0 gives

px(0 ≤ q ′ ≤ q) =
∫ +i∞

−i∞

ds

2π i
e(s−1)QI (s)J (s,2X), (58)
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where we introduced the dimensionless variables Q and X as in (49) and we defined the
functions

I (s) =
∫ ∞

−∞
dzJ (s,2z), (59)

and

J (s, y) = ey

∫ ∞

0

dν√
π

3ν−3/2e− 2
3 s3/2ν−3

Ai

[
−νy + s

ν2

]

−
∫ ∞

0

dνdμ

π

9ν−3/2μ3/2

ν3 + μ3
e− 2

3 (ν−3+s3/2μ−3)Ai

[
νy + 1

ν2

]
Ai

[
−μy + s

μ2

]
. (60)

For y ≥ 0, we obtain using (187)–(190),

y ≥ 0 : J (s, y) = s−1/4e(1−√
s)y −6

∫ ∞

0

dν

ν2
e

2
3 (s3/2−1)ν−3

Ai

[
νy + 1

ν2

]
Ai

[
νy + s

ν2

]
. (61)

For y ≤ 0, using (189) in the second term of (60), we obtain

y ≤ 0 : J (s, y) = 6
∫ ∞

0

dμ

μ2
e− 2

3 (s3/2−1)μ−3
Ai

[
−μy + 1

μ2

]
Ai

[
−μy + s

μ2

]
. (62)

Therefore, since we have the primitive
∫

duAi

[
νu + s1

ν2

]
Ai

[
νu + s2

ν2

]

= ν

s1 − s2

{
Ai′

[
νu + s1

ν2

]
Ai

[
νu + s2

ν2

]
− Ai

[
νu + s1

ν2

]
Ai′

[
νu + s2

ν2

]}
, (63)

the integral (59) reads as

I (s) = s−1/4

2(
√

s − 1)
+ 3

s − 1

∫ ∞

−∞

dν

ν
e

2
3 (s3/2−1)ν−3

[
Ai′

(
s

ν2

)
Ai

(
1

ν2

)
−Ai

(
s

ν2

)
Ai′

(
1

ν2

)]
.

(64)

Using (199) this yields the simple result

I (s) = 1

s − 1
. (65)

Therefore, in terms of dimensionless variables, the cumulative probability (58) reads as

PX(0 ≤ Q′ ≤ Q) =
∫ +i∞

−i∞

ds

2π i
e(s−1)Q J (s,2X)

s − 1
. (66)

On the other hand, since the system is statistically invariant through reflection about the
origin, we have the symmetry px(0 ≤ q ′ ≤ q) = p−x(−q ≤ q ′ ≤ 0). This implies that the
cumulative probability distribution associated with a Lagrangian coordinate q ′ on the nega-
tive real axis reads as

PX(−Q ≤ Q′ ≤ 0) =
∫ +i∞

−i∞

ds

2π i
e(s−1)Q J (s,−2X)

s − 1
. (67)
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We can also check (67) through an explicit calculation similar to (55).
From (54) and (66)–(67), the cumulative velocity distribution is given by

v ≤ x

t
: px(v ≤ v′ ≤ x/t) = px(0 ≤ q ′ ≤ x − vt) = PX(0 ≤ Q′ ≤ X − V ), (68)

v ≥ x

t
: px(x/t ≤ v′ ≤ v) = px(x − vt ≤ q ′ ≤ 0) = P−X(0 ≤ Q′ ≤ V − X), (69)

where we introduced the dimensionless velocity V defined as in (50). Of course, (66)–(69)
agree with the scalings (11).

Letting |Q| → ∞ in (66)–(67), or |V | → ∞ in (68)–(69), we obtain the probabilities that
the Lagrangian coordinate q , associated with the Eulerian coordinate x, is located on either
side of the origin (or that the velocity v is smaller or greater than x/t ):

px(q ≥ 0) = px(v ≤ x/t) = J (1,2X), (70)

px(q ≤ 0) = px(v ≥ x/t) = J (1,−2X). (71)

Here we used the fact that the large-Q behavior of (66)–(67) is set by the rightmost singu-
larity of the ratio J (s,±2X)/(s − 1), which is the simple pole at s = 1. From (61)–(62) we
obtain for x ≥ 0:

x ≥ 0 : px(q ≤ 0) =
∫ ∞

0
dν

6

ν2
Ai

[
ν2X + 1

ν2

]2

, px(q ≥ 0) = 1 − px(q ≤ 0). (72)

We can check that the sum of these two probabilities is equal to unity. As expected, (72)
shows that px(q ≤ 0) decreases as x gets larger and it goes to zero for x → +∞. For x = 0,
both quantities are equal to J (1,0) = 1/2, as can be checked from the explicit computation
of the integral in (72).

Finally, from (66)–(67) the probability densities are given by:

Q ≥ 0 : PX(Q) =
∫ +i∞

−i∞

ds

2π i
e(s−1)QJ (s,2X), PX(−Q) =

∫ +i∞

−i∞

ds

2π i
e(s−1)QJ (s,−2X).

(73)
This also gives the velocity distributions through the relation (50).

4.2 Velocity Distribution at the Origin x = 0

We consider here the one-point distribution at the origin x = 0. From (73) we can check that
the distribution is even (we have Q = −V at X = 0). For V ≥ 0 it is given by

V ≥ 0 : P0(V ) =
∫ +i∞

−i∞

ds

2π i
e(s−1)V J (s,0), P0(−V ) = P0(V ). (74)

The behavior for V → 0+ is determined by the behavior at s → +∞ of J (s,0). From (62)
and using (177) we obtain

s → +∞ : J (s,0) ∼
√

3

π
s−1/2, (75)

which leads to

V → 0+ : P0(V ) ∼ 1

π

√
3

πV
. (76)
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Fig. 2 (Color online) Left panel: The probability distribution P0(V ) of the reduced velocity V = v/(2Dt)

at the origin x = 0, from (74). The dashed lines show the asymptotic behaviors (76) and (77). Right panel:
Same as left panel but on a logarithmic scale

Thus, we obtain an inverse square-root divergence for P0(V ) at V → 0.
The behavior of P0(V ) for large V is governed by the rightmost singularity of J (s,0),

located at s = 0 (associated with the branch cut along the negative real axis). There, J (s,0)

behaves as J (s,0) ∼ s−1/4, because of the first term in (61). This yields

V → +∞ : P0(V ) ∼ 1

�[1/4]V
−3/4e−V . (77)

Note that initially, at time t = 0, the velocity at the origin is not random as it is equal to
zero, see (5). Then, for t > 0 the nonlinear evolution of the velocity field v(x, t) broadens
this initial Dirac peak and gives rise to the exponential tail (77) at large velocities and to the
power-law peak (76) at low velocities. We show in Fig. 2 the velocity distribution P0(V ),
as well as the asymptotic behaviors (76) and (77), that happen to describe very well most of
the distribution.

We can note that since all quantities can be expressed in terms of the scaling variables
(49)–(50), the exponential tail (77) can be understood from simple scaling arguments ap-
plied to the initial velocity field. Thus, for a particle of initial Lagrangian position q > 0 to
reach the Eulerian position x = 0 at time t , we can expect its initial velocity to be of order

v0 ∼ −q/t . From (8) this corresponds to a probability of order e
−v2

0/(2σ 2
v0

(q)) ∼ e−q/t2 ∼ e−Q,
where we did not write factors of order unity in the exponent, which cannot be obtained by
such arguments. Thus, we recover the exponential tail (77) (at X = 0 we have V = −Q).

4.3 Velocity Distribution for |x| → ∞

Finally, we consider the one-point velocity distribution at large |x|. By symmetry, we only
need consider x → +∞. Using the relation X = Q + V and (73), we can write the velocity
distribution in terms of the reduced variables X and V as

V ≤ X : PX(V ) =
∫ +i∞

−i∞

ds

2π i
e(s−1)(X−V )J (s,2X). (78)
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We now consider the limit X → +∞ at fixed V . Then, making the change of variable
s = 1 + ik, we obtain at leading order (k being of order X−1/2)

PX(V ) ∼
∫ ∞

−∞

dk

2π
eik(X−V )e(1−√

1+ik)2X ∼
∫ ∞

−∞

dk

2π
e−ikV −Xk2/4 = e−V 2/X

√
πX

. (79)

Therefore, in terms of the variable v, we recover as expected the initial Gaussian (8). This
can be understood as follows. A remote region [x − L/2, x + L/2], with L � x, has a
mean initial velocity v0 ∼ √

Dx that is much larger than its initial velocity dispersion
�v0 ∼ √

DL, see (9). Then, this domain remains well-defined and not strongly disturbed
by neighboring regions until times of order t∗ with �v0t∗ = L, that is Dt2∗ = L. Conversely,
at any time t , for x 
 Dt2 (i.e. X 
 1) it is possible to make such a separation of scales
and to identify a region of size L around x, with Dt2 � L � x, that moves in a collective
fashion with a mean velocity � v0(x) that is set by the initial velocity. Therefore, we re-
cover at leading order the initial Gaussian velocity distribution, of variance σv = √

Dx (i.e.
σV = √

X/2 
 1), and the nonlinear evolution only modifies the velocity distribution by
changes of order �v ∼ Dt (i.e. �V ∼ 1). The result (79) confirms this simple scaling argu-
ment. This is an illustration of the “principle of permanence of large eddies” [26], that holds
for more general energy spectra, E0(k) ∝ kn, with n < 1. As suggested by this discussion,
and as checked in numerical simulations [2, 23], the stability of large-scale structures is not
only a statistical property but actually holds on an individual basis, that is for each random
realization of the velocity field.

Of course, this reasoning does not apply to rare events, such as those where the dis-
placement x − q remains of order x. In particular, from (72), we obtain for the cumulative
probability to have a negative Lagrangian coordinate q the asymptotic behavior

x → +∞ : px(q ≤ 0) = px(v ≥ x/t) ∼ (
8π

√
3X

)−1/2
e−4

√
3X. (80)

Thus, we obtain an exponential tail for these very rare events. It can again be understood
from simple scaling arguments, as for the exponential tail (77). Thus, for a particle with
Lagrangian coordinate q < 0 to reach the position x 
 2Dt2, we can associate the initial
velocity v0 = (x − q)/t and the probability e−(x−q)2/(t2|q|), using (8) without writing nu-
merical factors. Then, the maximum over q < 0 of this exponential weight is reached for
q = −x, which gives a weight ∼ e−x/t2 ∼ e−X that agrees with (80). We show in Fig. 3 the
probability px(q ≤ 0), as well as the asymptotic decay (80).

5 Two-Point and Higher-Order Distributions

5.1 General Results for x1 < x2 and 0 < q1 < q2

We now study the two-point Eulerian velocity distribution px1,x2(v1, v2), with x1 < x2. As in
Sect. 4, we first consider the distribution px1,x2(q1, q2) of the Lagrangian coordinates q1, q2,
associated with the Eulerian positions x1, x2. For the Brownian initial conditions (5)–(6)
shocks are dense [41, 43]. Therefore, for x1 < x2 there is almost surely a shock between x1

and x2 and these two Eulerian points are associated with two different Lagrangian coordi-
nates q1 �= q2. This can also be understood from the fact that at the contact point q1 (resp. q2)
the curve ψ0(q) is tangent to a parabola Px1,c1(q) (resp. Px2,c2(q)), from the geometric con-
struction recalled in (12). Then, since two parabolas Px1,c1 and Px2,c2 with x1 �= x2 have
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Fig. 3 (Color online) Left panel: The probability px(q ≤ 0) (equal to the reduced cumulative probability
PX(Q ≤ 0)), that a particle, located at a position x > 0 at time t , was initially located on the negative real
axis, q < 0, from (72). The dashed line is the asymptotic behavior (80). Right panel: Same as left panel but
on a logarithmic scale

different tangents at any point q (indeed dPx,c/dq = −(q − x)/t ), the curve ψ0(q) can-
not be tangent to both parabolas at a common point q1 = q2 (in both steps we used the
property that the derivative ψ ′

0(q) is continuous, being a Brownian motion). Therefore, we
almost surely have q1 �= q2. Then, since particles do not cross each other we have q1 < q2

for x1 < x2.
As in Sect. 4.1, we first consider the cumulative probability distribution, px1,x2(0 ≤ q ′

1 ≤
q1;q ′

2 ≥ q2), that the Lagrangian coordinates q ′
1, q

′
2, associated with the Eulerian positions

x1, x2, are within the ranges 0 ≤ q ′
1 ≤ q1 and q2 ≤ q ′

2 < +∞. Let us consider this probability
in two steps. First, as for (55), we consider the initial conditions such that ψ0(q) stays
everywhere above a parabola Px1,c1 but goes below Px1,c1+dc1 somewhere in the range 0 ≤
q ′

1 ≤ q1. Integrating over the height c1 this will take care of the first constraint 0 ≤ q ′
1 ≤ q1

for the Lagrangian coordinate associated with x1. Second, we must only count among those
initial conditions the ones that also satisfy q ′

2 ≥ q2. We split them into two contributions as
follows. Let us note q∗ the unique abscissa where the two contact parabolas Px1,c1 and Px2,c2

intersect. From (12) it is given by

q∗ = x1 + x2

2
− c2 − c1

x2 − x1
t. (81)

Then, we note p> the first contribution, associated with initial conditions such that q∗ > q2

(which implies q ′
2 > q∗ > q2). Clearly, this actually corresponds to curves ψ0(q) that at some

point go below the parabola Px2,c∗ where c∗ is such that q∗ = q2 (i.e. the second parabola
intersects Px1,c1 at q2). We note p< the second contribution, associated with q1 < q∗ < q2

(since afterwards we shall consider the probability density px1,x2(q1;q ′
2 ≥ q2) we only need

to include the cases with q∗ > q1). We show in Figs. 4 and 5 the geometrical interpretation
of these two contributions p> and p<.

We describe in Appendix C the computation of the two-point distribution px1,x2(q1, q2)

from these two contributions p> and p<. As for the one-point distribution computed in
Sect. 4.1, we first express the kernels K in terms of the Brownian propagator G obtained
in Sect. 3 and we use various properties of the Airy functions, described in Appendices A
and B, to simplify the integrals. We finally obtain for the sum of both contributions the
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Fig. 4 (Color online) Geometrical interpretation of the initial conditions ψ0(q) associated with the contri-
bution p>

x1,x2
(0 ≤ q ′

1 ≤ q1, c1;q ′
2 ≥ q2)dc1. The Brownian curve ψ0(q) is everywhere above the parabola

Px1,c1 , it goes below Px1,c1+dc1 somewhere in the range 0 ≤ q ′
1 ≤ q1, and it goes below the parabola

Px2,c∗ , of center x2, that intersects Px1,c1 at q∗ = q2. This counts all paths with a first-contact parabola
Px2,c2 such that c2 ≤ c∗ and q∗ ≥ q2 (which implies q ′

2 ≥ q2)

Fig. 5 (Color online) Geometrical interpretation of the initial conditions ψ0(q) associated with the con-
tribution p<

x1,x2
(0 ≤ q ′

1 ≤ q1, c1;q ′
2 ≥ q2, c2)dc1dc2. The Brownian curve ψ0(q) is everywhere above the

parabolas Px1,c1 and Px2,c2 , it goes below Px1,c1+dc1 somewhere in the range 0 ≤ q ′
1 ≤ q1, and below the

parabola Px2,c2+dc2 somewhere in the semi-infinite range q ′
2 ≥ q2. The height c2 of the second parabola is

such that both parabolas intersect at q∗ in the range q1 ≤ q∗ ≤ q2

probability density

PX1,X2(Q1,Q2) =
∫ +i∞

−i∞

ds1ds2

(2π i)2
e(s1−1)Q1+(s2−1)Q21J (s1,2X1)e

−(
√

s2−1)2X21 . (82)

Comparing with the one-point probability density (73), we find that for 0 ≤ Q1 ≤ Q2 the
two-point probability density factorizes as

X1 ≤ X2,0 ≤ Q1 ≤ Q2 : PX1,X2(Q1,Q2) = PX1(Q1)P X21(Q21), (83)

where we introduced

P X(Q) =
∫ +i∞

−i∞

ds

2π i
e(s−1)Qe−(

√
s−1)2X. (84)
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Therefore, the conditional probability P (X2,Q2|X1,Q1) obeys the property

X1 ≤ X2,0 ≤ Q1 ≤ Q2 : P (X2,Q2|X1,Q1) = PX1,X2(Q1,Q2)

PX1(Q1)
= P X21(Q21), (85)

that is, it only depends on the relative distances X21 and Q21, and no longer on Q1 and
X1, over the range Q1 ≥ 0. Thus, the system is statistically homogeneous with respect to
Lagrangian and velocity increments as long as we remain on either side of the origin Q = 0.
Indeed, by symmetry through reflection about the origin we also have

X1 ≤ X2,Q1 ≤ Q2 ≤ 0 : PX1,X2(Q1,Q2) = P−X2,−X1(−Q2,−Q1)

= P−X2(−Q2)P X21(Q21)

= PX2(Q2)P X21(Q21). (86)

Then, in the limits X1 → +∞, or X2 → −∞, where the weight of configurations such that
Q1 and Q2 have different signs vanishes, we recover the invariance through translation of
the probability distributions of relative displacements and velocity increments. Of course,
this is related to the fact that the initial conditions have homogeneous velocity increments,
see (9). However, the invariance through translation is only recovered in the exact nonlinear
velocity distribution if we go infinitely far from the origin Q = 0. As we get closer to the
origin it is broken by the increasing weight of configurations, such that Q1 and Q2 are on
different sides of the origin, which do not satisfy the factorizations (83) or (86). Indeed, note
that (86) shows that the factorization (83) cannot be extended to Q1 < 0, as for Q1 < 0 and
Q2 < 0 we must reach the other regime (86) that cannot hold simultaneously.

Thus, at finite distance from the origin the invariance through translation is always partly
broken for the distribution Px1,x2(q1, q2) considered over the full range −∞ < q1 ≤ q2 < ∞.
Nevertheless, the invariance is exactly recovered over either the partial range 0 ≤ q1 ≤ q2 <

∞, or −∞ < q1 ≤ q2 ≤ 0. This can be understood as follows, focussing on the case q1 > 0
with again x1 < x2. The probability density px1(q1) counts the configurations ψ0(q) that
are tangent at q1 with the highest first contact parabola Px1,c1 , from the geometric construc-
tion described below (12). Then, the conditional probability density p(x21, q21|x1, q1) only
counts among those the configurations that are also tangent at q2 with the highest first con-
tact parabola Px2,c2 . Independently of the behavior of the curve ψ0 on either side of q1,
the first-contact height parameter c2 must be smaller than the value c∗ such that Px2,c∗ runs
through the point {q1,ψ0(q1)}. Then, for any c2 < c∗, we clearly have Px2,c2(q) < Px1,c1(q)

for all q < q1 (using x1 < x2), whence Px2,c2(q) < ψ0(q) for all q < q1 since we have al-
ready selected those configurations associated with px1(q1) that are above Px1,c1 (and make
contact at q1). (In other words, the additional requirement q(x2) = q2 does not bring any ad-
ditional constraint on ψ0(q) over q < q1.) Therefore, we are only sensitive to the behavior
of ψ0 to the right of q1. For the Brownian initial conditions (5), the latter is fully determined
by {ψ0(q1), v0(q1)} and the white noise ξ(q) at q ≥ q1 (which is statistically homogeneous).
Next, p(x21, q21|x1, q1) does not depend on ψ0(q1) since a vertical translation of the curves
ψ0 and Px1,c1 is fully absorbed by the same vertical translation of the parabola Px2,c2 , with-
out affecting spatial coordinates q and x. On the other hand, through Galilean invariance
the relative displacements of the particles only depend on their relative velocities, hence
p(x21, q21|x1, q1) only depends on the relative velocity field v0(q)− v0(q1) over q ≥ q1. For
the Brownian initial conditions (5), with homogeneous velocity increments, the statistical
properties of this relative velocity field v0(q) − v0(q1) do not depend on v0(q1), but only
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on the distance q − q1, see (9). Therefore, the distributions p(x21, q21|x1, q1), of the La-
grangian position increment q21, and p(x21, v21|x1, v1), of the velocity increment v21, only
depend on x21, as in (85) and in (89) below.

In agreement with (86), we can check that this argument fails for q1 < 0. Indeed, again
we are only sensitive to the behavior of ψ0(q) to the right of q1, but this range now in-
cludes the special point q = 0 with the constraints ψ0(0) = 0 and v0(0) = 0 that prevent
us from absorbing ψ0(q1) and v0(q1). For instance, we now have the new constraint that
the first-contact parabola Px2,c2 cannot go upward of the point {0,ψ0(0) = 0} (which was
irrelevant in the previous case q1 > 0, since we already had Px2,c2 < Px1,c1 over q < q1 and
Px1,c1(0) ≤ 0 by construction, being everywhere below ψ0).

The property that the increments of the inverse Lagrangian map, q(x2) − q(x1), are in-
dependent and homogeneous, as in (85), and the probability distribution (84), were already
obtained by [12] for intrinsic statistical solutions, and by [9] through probabilistic tools for
x ≥ 0 in the case of one-sided Brownian initial conditions (i.e. v0(q) = 0 for q ≤ 0). The
latter work involves a similar reasoning to the one described above, using the property that
the distribution of a Markov process after last passage at a given point does not depend on its
previous path, but this mathematical proof uses the convex hull of the Lagrangian potential
rather than the parabolas construction used here. For one-sided Brownian initial conditions,
it is clear that if we consider Eulerian locations at x ≥ 0, the particles can only come from
the right side q ≥ 0 so that we recover the configuration analyzed above for particles that
are all located on the same side of the origin. The agreement with the results of [9] pro-
vides a nice check of our calculations. The probabilistic proof is remarkably concise, as it
first shows that the increments q21 are independent and homogeneous and next derives their
distribution. However, the analysis method presented in the present work has the advantage
of a large range of applicability. Thus, it allowed us to obtain the one-point distributions
in closed form in Sect. 4 and it could also be applied to different-time statistics, where the
parabolas would have different curvatures. Another application of the method described in
this paper is presented in [48], where we study ballistic aggregation for one-sided Brownian
initial velocity.

The previous discussion can be extended to n-point distributions, which thus factorize as

X1 ≤ . . . ≤ Xn,0 ≤ Q1 ≤ . . . ≤ Qn :
PX1,...,Xn(Q1, . . . ,Qn)

= PX1(Q1)P X2−X1(Q2 − Q1)P X3−X2(Q3 − Q2) . . .P Xn−Xn−1(Qn − Qn−1). (87)

We obtain a similar identity for Q1 ≤ . . . ≤ Qn ≤ 0 by reflection through the origin, as for
(86). This also extends to the general case where the Lagrangian coordinates are located on
both sides of the origin as

X′
m ≤ . . . ≤ X′

1 ≤ X1 ≤ . . . ≤ Xn,Q
′
m ≤ . . . ≤ Q′

1 ≤ 0 ≤ Q1 ≤ . . . ≤ Qn :

PX′
i
;Xj

(Q′
i;Qj) = PX′

1,X1
(Q′

1,Q1)

m∏
i=2

P X′
i−1,i

(Q′
i−1,i )

n∏
j=2

P Xj,j−1(Qj,j−1), (88)

where we defined relative distances such as Xj,j−1 = Xj − Xj−1. However, it appears that
the probability distribution PX′

1,X1
(Q′

1,Q1), with Q′
1 ≤ 0 ≤ Q1, does not greatly simplify

and is given by intricate multiple integrals. Therefore, we shall not consider it further in this
article. Note that for practical purposes one is mostly interested in the behavior far from the
origin, where the invariance through translations is fully restored.
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In terms of velocities, using the relation (50) for the dimensionless velocities Vi , we
obtain from the previous results the factorization

X′
m ≤ . . . ≤ X′

1 ≤ X1 ≤ . . . ≤ Xn,V
′

1 ≥ X′
1,V

′
i,i−1 ≥ X′

i,i−1,V1 ≤ X1,Vj,j−1 ≤ Xj,j−1 :

PX′
i
;Xj

(V ′
i ;Vj ) = PX′

1,X1
(V ′

1,V1)

m∏
i=2

P X′
i−1,i

(V ′
i−1,i )

n∏
j=2

P Xj,j−1(Vj,j−1), (89)

where the various factors are the velocity probabilities that may be obtained from the La-
grangian Q-probability densities through (50). As noticed above, the factorizations (88)–
(89) also follow from the analysis of [9]. However, although this provides the conditional
distribution P X2−X1(Q2 −Q1) of the Lagrangian increment it does not give the distributions
PX′

i
;Xj

(Q′
i;Qj) or PX′

1,X1
(V ′

1,V1) that appear in these n-point distributions. Nevertheless, in
the limit where we are far from the origin, we only need the one-point distribution PX1(Q1),
which goes to the Gaussian (79), as would also be the case for one-sided initial conditions,
besides in that limit we are mostly interested in the distributions of relative increments.

We can note that the Burgers equation with Brownian initial velocity which we study in
this paper was also used in a recent article [19] to discuss the concept of local homogeneity
that is used in turbulence studies. Indeed, for systems which are not strictly homogeneous
(the energy shows an infrared divergence) it is customary to assume incremental homo-
geneity so that the physical quantities of interest (e.g. velocity increments) remain homo-
geneous. However, as noticed in [19] this is not fully consistent because initial incremental
homogeneity is destroyed at later times by the nonlinearity of the equations of hydrodynam-
ics (the quadratic advective term). Then, they used numerical simulations and perturbative
analysis of the 1-D Burgers dynamics with two-sided Brownian initial velocity to illustrate
this point and to note that local homogeneity is only asymptotically recovered far from the
reference point. The results (88) and (89) above explicitly show how the incremental homo-
geneity is indeed destroyed at finite distance from the origin but asymptotically recovered
at large distances. A peculiarity of this system is that at finite distance it is already exactly
recovered over a partial range of velocities. In fact, for the case of one-sided initial condi-
tions (v0(q) = 0 for q ≤ 0) the system is exactly homogeneous over x > 0, as shown by the
previous discussion and [9].

The factorizations (88) and (89) also show that small scales are largely decoupled from
long-wavelength modes. Note that this key property is usually assumed in hydrodynamical
systems (so that one can ignore the details of the large-scale boundary conditions) but is
often difficult to prove in a precise manner.

5.2 Distribution of Lagrangian Increments (i.e. of Relative Initial Lagrangian Distance)

We now study in more details the probability distribution, P X(Q), of the relative Lagrangian
positions (i.e. relative initial distance q between particles that are separated by distance x at
time t ), that is, of the increments of the inverse Lagrangian map (here we omit the subscripts
“21” to simplify the notations). The following results apply far from the origin, or at any
location on the right side of the origin if we have one-sided initial conditions (v0(q) = 0 at
q ≤ 0).

We can check from the integral representation (84) that for X → 0 we obtain as expected
the Dirac distribution P X(Q) → δ(Q) (whence Q2 → Q1 for X2 → X1). In fact, (84) is a
well-known inverse Laplace transform [1] which gives the explicit expression

X ≥ 0,Q ≥ 0 : P X(Q) = X√
π

Q−3/2e2X−Q−X2/Q = X√
π

Q−3/2e−(
√

Q−X/
√

Q)2
. (90)
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Fig. 6 (Color online) Left panel: The probability density px(q) that two particles, separated by the distance
x > 0 at time t , were initially separated by a distance q (in the limit where the particles are far from the origin,
or anywhere on the right side for one-sided initial conditions). This is the distribution of the increments of the
inverse Lagrangian map, x �→ q . We show the reduced probabilities, PX(Q), in terms of the dimensionless
variables X = x/(2Dt2) and Q = q/(2Dt2), for three values of X, from (90). The probability is zero for
Q < 0. For large relative distance X we recover a Gaussian of center X and variance 〈(Q − X)2〉 = X/2.
Right panel: The probability density PX(Q) on a logarithmic scale, for three values of X

Therefore, we obtain an exponential tail at large Q, as ∼ e−Q, and a strong falloff at small Q,
as ∼ e−X2/Q. For large relative distance X this gives the Gaussian

X → +∞, |Q − X| � X : P X(Q) ∼ 1√
πX

e−(Q−X)2/X. (91)

This agrees with the expectation that over large distances particles are still governed by the
initial velocity field, as discussed in Sect. 4.3 for (79). This is again an illustration of the
“principle of permanence of large eddies” [26], see the discussion below (79).

We show the probability density P X(Q) obtained for three relative distances X in Fig. 6.
We clearly see that for large X, which corresponds to large scales or small times, we recover
a Gaussian centered on X, whereas for small X we obtain a skewed distribution with an
intermediate power-law regime Q−3/2.

From (90) we obtain the moments of the Lagrangian increments Q as [21]

〈Qn〉 = 2√
π

Xn+1/2e2XKn−1/2(2X) = Xn

n−1∑
k=0

(n − 1 + k)!
k!(n − 1 − k)!(4X)k

, (92)

where the last equality only holds for n ≥ 1, and Kν is the modified Bessel function of the
second kind. This gives for the first few moments

〈Q〉 = X, 〈Q2〉 = X2 + X

2
, 〈Q3〉 = X3 + 3X2

2
+ 3X

4
. (93)

We can note that the mean of the relative displacement, χ = X − Q, is zero: the mean
distance between particles does not change (far from the origin). On the other hand, if we
define the usual moment-generating function �(y) by

�(y) =
∞∑

n=0

(−y)n

n! 〈Qn〉 =
∫ ∞

0
dQe−yQP X(Q), P X(Q) =

∫ +i∞

−i∞

dy

2π i
eQy�(y),

(94)
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we obtain from (84), making the change of variable s = 1 + y,

�(y) = e−(
√

1+y−1)2X. (95)

Therefore, the cumulant-generating function �(y), which satisfies the standard relation

�(y) =
∞∑

n=1

(−y)n

n! 〈Qn〉c = ln[�(y)], (96)

is given by

�(y) = −(
√

1 + y − 1)2X = −Xy + 2X

∞∑
n=2

(2n − 3)!!
2nn! (−y)n. (97)

This yields the simple results

〈Q〉c = X, and for n ≥ 2 : 〈Qn〉c = (2n − 3)!!
2n−1

X. (98)

We can note that the first equality in (92) also holds for non-integer n, and we obtain for
small Eulerian distance, (x2 − x1) → 0+,

ν >
1

2
: 〈(q2 − q1)

ν〉 ∼ (2Dt2)(ν−1)
�[ν − 1

2 ]√
π

(x2 − x1), (99)

ν <
1

2
: 〈(q2 − q1)

ν〉 ∼ (2Dt2)−ν
�[−ν + 1

2 ]√
π

(x2 − x1)
2ν . (100)

Note that the second scaling also holds for any negative ν. Indeed, the strong cutoff, e−X2/Q,
of the probability distribution (90), ensures that all negative moments are finite. Equations
(99)–(100) show that we recover the bifractality of the inverse Lagrangian map, that was
already derived in [3] for ν ≥ 0. As is well-known [18], the scaling (99) is universal as it is
due to shocks. Indeed, if we have a shock of finite Lagrangian increment δq at position x,
it gives a contribution [q(x + �/2) − q(x − �/2)]n ∼ (δq)n which remains of order unity
for � → 0+ for any n. Next, the probability to have a shock of a given finite strength δq

in a small Eulerian interval � scales as � at small distances, which gives rise to the factor
(x2 − x1) in (99). Note that in our case, the total number of shocks per unit length is actually
infinite [41, 43], see Sect. 8.1 below, as the shock mass function (154) leads to a divergence
at low mass, but the number of shocks above a finite mass threshold is finite and this is
sufficient to make the scaling (99) universal. However, the behavior observed at ν < 1 (the
critical value νc = 1/2 and the exponent 2ν observed below νc in (100)) depends on the
initial energy spectrum, through the low-mass tail of the shock mass function, see also [3]
for more detailed discussions.

5.3 Distribution of Eulerian Velocity Increments

We now consider the probability distribution, P X(V ), of the relative Eulerian velocities, that
is of the velocity increments V (X2) − V (X1). From (90) we obtain

X ≥ 0,V ≤ X : P X(V ) = X√
π

(X − V )−3/2e−(
√

X−V −X/
√

X−V )2
. (101)
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Fig. 7 (Color online) Left panel: The probability density px(v) of the velocity increment v = v(x2)− v(x1)

for two positions separated by the distance x = x2 − x1 (in the limit where we are far from the origin, or
anywhere on the right side for one-sided initial conditions). We show the reduced probabilities, PX(V ) in
terms of the dimensionless variables X = x/(2Dt2) and V = v/(2Dt), for three values of X, from (101).
The probability is zero for V > X. At large relative distance X we recover a symmetric Gaussian of variance
〈V 2〉 = X/2. Right panel: The probability density PX(V ) on a semi-logarithmic scale, for three values of X

In the limit of large relative Eulerian distance X → ∞, at fixed V , the distribution (101) can
be expanded around the maximum of the exponent at V = 0 (corresponding to Q = X) and
we again recover the initial Gaussian

|V | � X : P X(V ) ∼ 1√
πX

e−V 2/X, (102)

in agreement with the fact that over large distances particles are still governed by the initial
velocity field (see also Sect. 4.3). We show in Fig. 7 the velocity distribution P X(V ) for three
values of X. We can again check that we recover a Gaussian for large X (i.e. large scales or
small times), whereas for smaller X the upper bound V ≤ X is increasingly apparent while
a power law develops at intermediate negative velocities.

From (98) the velocity cumulants are given by

n ≥ 2 : 〈V n〉c = (−1)n (2n − 3)!!
2n−1

X, whence 〈V 〉 = 0, 〈V 2〉 = X

2
, 〈V 3〉 = −3X

4
.

(103)

We can note that the first moment exactly vanishes whereas the variance 〈V 2〉 remains equal
to that of the initial Gaussian field, see (9), even though P X(V ) is no longer Gaussian. Thus,
in terms of the dimensional variables the velocity energy spectrum remains equal to the
initial one,

〈[v(x2, t) − v(x1, t)]2〉 = D|x2 − x1|, E(k, t) = E0(k) = D

4π
k−2. (104)

Finally, in the limit of small separations we obtain from (103)

n ≥ 2, (x2 − x1) → 0+ : 〈(v2 − v1)
n〉 ∼ (2Dt2)n−1

tn
(−1)n (2n − 3)!!

2n−1
(x2 − x1). (105)

Therefore, we recover the universal scaling at small distances of the structure functions [18],
〈[v(x +�)−v(x)]n〉 ∝ �, that was also observed in the numerical simulations of [41]. This is
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due to the contribution from shocks, as discussed below (99)–(100). Thus, if we have a shock
of finite velocity jump −δv = δq/t at location x, then [v(x +�/2)−v(x −�/2)]n ∼ (−δv)n

for � → 0+. Note that δv is positive, since a shock is associated with particles from the left
overtaking particles on the right, so that v(x−) > v(x+), which agrees with the factor (−1)n

in (105). Again, the factor (x2 − x1) in (105) comes from the probability to encounter a
shock of strength larger than some finite threshold δq in a small Eulerian interval [x1, x2].

6 Density Field

6.1 Overdensity within Finite Size Domains

We consider here the evolution of a density field ρ(x, t) that evolves through the usual
continuity equation,

∂ρ

∂t
+ ∂

∂x
(ρv) = 0, (106)

whereas the velocity field v(x, t) evolves through the Burgers equation (1). The initial con-
ditions for the velocity are set by (5) as in previous sections, whereas the initial density is a
constant ρ0. Thus, the mass m between particles q1 and q2, with q1 < q2, is m = ρ0(q2 −q1).
This quantity is conserved by the dynamics since particles do not cross each other (though it
is ambiguous at shock locations, but the latter have zero measure in Eulerian space). Then,
the overall overdensity, η = m/(ρ0x), over the length x = x2 −x1, is η = (q2 −q1)/(x2 −x1)

by conservation of matter, where qi is the initial Lagrangian position of the particle that is
located at xi at time t . In terms of dimensionless variables this reads as the ratio of relative
distances η = Q/X. Therefore, far from the origin (|x1| → ∞), or on the right side of the
origin for one-sided initial conditions, we obtain from (90) the probability distribution of
the overdensity at scale X as

η = m

ρ0x
,η ≥ 0 : PX(η) =

√
X

π
η−3/2e−X(

√
η−1/

√
η)2 =

√
X

π
e2Xη−3/2e−X(η+1/η). (107)

Over large scales we recover a Gaussian distribution, as for the variables Q and V , while
on small scales, X → 0, we obtain the power law η−3/2 between the low and high density
cutoffs at η− ∼ x/(2Dt2) and η+ ∼ (2Dt2)/x, as we can see in Fig. 8 where we show the
overdensity distribution PX(η) for three values of X. We can note that this is very similar
to the behavior that is observed in cosmological numerical simulations for gravitational
clustering [4, 14, 49].

From (92) and (98) we obtain for the moments and the cumulants of the overdensity at
scale X:

n ≥ 1 : 〈ηn〉 =
n−1∑
k=0

(n − 1 + k)!
k!(n − 1 − k)!(4X)k

, and for n ≥ 2 : 〈ηn〉c = (2n − 3)!!
(2X)n−1

,

(108)
whence for the lowest orders

〈η〉 = 1, 〈η2〉c = 1

2X
, 〈η3〉c = 3

4X2
= 3〈η2〉2

c . (109)
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Fig. 8 (Color online) Left panel: The probability distribution px(η) of the overdensity, η = m/(ρ0x), over
a region of length x. We show PX(η) for three values of the reduced length X = x/(2Dt2), from (107).
Thus larger X corresponds to larger scale or smaller time. For large X we recover a Gaussian of mean 1 and
variance 〈(η − 1)2〉 = 1/(2X). For small X the distribution becomes skewed and an intermediate power-law
region develops. Right panel: The probability density Px(η) on a logarithmic scale, for three values of X

We can note that the second result (108) gives the cumulant hierarchy

Sn = 〈ηn〉c
〈η2〉n−1

c

= (2n − 3)!! and ϕ(y) =
∞∑

n=1

(−1)n−1Sn

yn

n! = √
1 + 2y − 1, (110)

which shows that the ratios Sn are constants that do not depend on time nor scale. We
can note that in the cosmological context, associated with a gravitational dynamics in a
3-dimensional expanding Universe, for the case of an initial power-law density power spec-
trum, the coefficients Sn, still defined as in (110), only show a weak dependence on scale in
the highly nonlinear regime, and they also asymptotically reach (different) finite values at
large scales in the quasi-linear regime [8, 14]. Then, it has been proposed to use the approxi-
mation of constant Sn to describe the highly nonlinear regime [37]. Moreover, the form (110)
of the reduced cumulant generating function ϕ(y) is one of the possibilities that have been
studied in this context [4]. This phenomenological ansatz is known as the “stable clustering
model” as it was derived by assuming that on small physical scales, after nonlinear collapse
and gravitational relaxation, overdensities decouple from the Hubble expansion and keep a
constant physical size [15]. In the present case, collapsed objects are actually Dirac peaks
(shocks) of vanishing size. Then, it is easy to see from a multifractal analysis that shocks
lead to finite ratios Sn in the small-scale limit [5, 44], so that the hierarchy (110) is univer-
sal, in the sense that the generating function ϕ(y) has a finite limit at small scale, x → 0.
However, this non-trivial limit depends on the initial energy spectrum. A specific property
of the Brownian initial conditions studied in this paper is that the ratios Sn are actually
constant over all scales, from the linear to highly nonlinear scales. Thus, it is interesting to
note that the 1-D Burgers equation with Brownian initial velocity provides an exact physical
realization of this ansatz.

6.2 Density Correlations

We now consider the unsmoothed density field ρ(x) itself (again in the limit where we are far
from the origin so that the previous results apply). It is related to the smoothed overdensity
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η over scale x introduced above through

η =
∫ x1+x

x1

dx ′

x

ρ(x ′)
ρ0

. (111)

Then, introducing the density power spectrum, P(k), by going to Fourier space as

ρ(x) − ρ0 =
∫ ∞

−∞
dkeikxρ(k), 〈ρ(k1)ρ(k2)〉 = δ(k1 + k2)ρ

2
0 P(k1), (112)

we obtain using the second (109) and (111)–(112)

Dt2

x
= 〈η2〉c =

∫ ∞

−∞
dksinc2

(
kx

2

)
P(k), and P(k, t) = Dt2

2π
, (113)

where sinc(x) = sin(x)/x is the cardinal sine. Thus, we obtain a white-noise density power
spectrum, with an amplitude that grows as t2. This yields the connected density two-point
correlation

〈ρ(x1, t)ρ(x2, t)〉c = ρ2
0C2(x1, x2), with C2(x1, x2) = Dt2δ(x2 − x1), (114)

which remains a Dirac function at all times.
In fact, the factorization (87) implies a similar factorization for the multivariate distribu-

tions of the smoothed density field, far from the origin (X1 → +∞),

X1 ≤ . . . ≤ Xn : PX2,1;...;Xn,n−1(η2,1; . . . ;ηn,n−1) = PX2,1(η2,1) . . . PXn,n−1(ηn,n−1), (115)

where ηi,i−1 is the mean overdensity over the interval [Xi−1,Xi]. Thus, the densities within
non-overlapping domains are completely independent random variables. This agrees with
the Dirac obtained in (114) for the connected density two-point correlation. Moreover, this
can be extended to all higher orders. Indeed, let us consider the density n-point connected
correlation, defined as

〈ρ(x1) . . . ρ(xn)〉c = ρn
0 Cn(x1, . . . , xn). (116)

If there exists a position xi that is different from all other positions xj , with j �= i, then
we can build a small region [xi − ε, xi + ε] where the density is independent from the
density at all other points xj , using the property (115) and ε → 0+. Therefore, by definition
of connected correlations, Cn must vanish. Then, the n-point connected correlation can be
written as the product of n − 1 Dirac factors

Cn(x1, . . . , xn) = (2n − 3)!!(Dt2)n−1δ(x2 − x1)δ(x3 − x1) . . . δ(xn − x1) (117)

= (2n − 3)!!C2(x1, x2)C2(x1, x3) . . .C2(x1, xn), (118)

where the amplitude is obtained from (108), as well as (111) which implies the relation
〈ηn〉c = x−n

∫ x

0 dx1 . . .dxnCn(x1, . . . , xn).
We can note that (2n − 3)!! also counts the number of heap ordered trees with n nodes,

that is, rooted trees where the n nodes are labelled as {1,2, . . . , n} and each path from
the root has increasing labels [39]. In our case, we can therefore construct the following
combinatorial interpretation of (117). First, the points x1, . . . , xn, are ordered such that x1 ≤
x2 ≤ . . . ≤ xn (we choose one among several possibilities if several positions are equal).
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Fig. 9 The 15 heap ordered trees that can be associated with the 4-point correlation C4(x1, . . . , x4). The
labels refer to the positions xi , which are ordered as x1 ≤ x2 ≤ x3 ≤ x4. We only show the 5 tree structures,
as the additional terms can be obtained from the previous diagram by permutations over the labels that satisfy
the ordering constraint that each path from the root has increasing labels as we proceed down to the leaves.
Each link between nodes i and j yields a contribution C2(xi , xj ) and the contribution of a tree is the product
of the 3 factors C2 associated with its 3 links. This gives C4 as the sum over all these tree contributions

Then, the n-point connected correlation (117) is obtained as the sum of the contributions of
all heap ordered trees, where the contribution of each tree is simply the product of the n − 1
factors C2(xi, xj ) associated with the n − 1 links between nodes xi and xj .

Of course, we may also write (117) as the sum over the products of C2(xi, xj ) associ-
ated with any other class of N trees, multiplied by a weight (2n − 3)!!/N . However, this no
longer recovers the amplitude (2n − 3)!! of (117) in a natural manner. We note that in the
cosmological context, within the stable-clustering ansatz discussed above, it has been pro-
posed to use as a phenomenological model a diagrammatic description such as Fig. 9, where
the connected n-point density correlation is written as the sum over trees of each product
of (n − 1) factors C2(xi, xj ) associated with the internal links [20, 40]. However, the tree
diagrams used in this context are usually not ordered, and each topology may have an addi-
tional multiplicative weight. In the present case of the 1-dimensional Burgers dynamics, we
can note that the concept of ordering naturally arises since particles do not cross each other
and one can order both Lagrangian and Eulerian positions on the line (this would no longer
be the case for higher dimensions).

Thus, the 1-D Burgers dynamics with Brownian initial velocity provides a physical real-
ization of the hierarchical structure such as (118) for the many-body correlation functions.
It is an interesting question to ask whether other real dynamical systems can be built that
display the same factorization property (possibly over other classes of trees) with other two-
point correlations C2.2 On the other hand, one may wonder whether a factorization such as
(118), and a diagrammatic construction such as Fig. 9, could be generalized, as an exact
asymptotic solution or as a useful phenomenological model, to the 1-dimensional Burgers
dynamics with other initial conditions, where C2 would no longer be the simple Dirac func-
tion (114).3

2In fact, as for the weaker property of constant ratios Sn , the author is not aware of other dynamical systems
that exactly obey such a factorization property. In view of the many phenomenological works that have used
such a diagrammatic construction for many-body correlations, it is satisfying to find that it is at least obeyed
by one truly dynamical system, even though the expression in terms of Dirac factors and the lack of large
distance correlation make this a very simple and specific case.
3The results of [9] show that the Brownian case can be generalized to Levy processes with no positive jumps,
where the increments of the inverse Lagrangian map again remain homogeneous and independent at all times.
However, this does not provide another hierarchy for the many-body correlations as they remain of the Dirac
type.
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6.3 Comparison with a Perturbative Approach

We can note that the exact (far from the origin) nonlinear results (113)–(114) are identical
to the perturbative predictions that would be obtained at linear order from (106). Indeed,
if we linearize the continuity and inviscid Burgers equations, we obtain at lowest order for
the density field ∂ρL/∂t = −ρ0∂vL/∂x = −ρ0∂v0/∂x = −ρ0ξ , where ξ is the initial white-
noise of (5). This gives ρL(x, t) = ρ0(1 − tξ(x)), which leads in turn to (113)–(114). The
fact that for these Brownian initial conditions the nonlinear Burgers dynamics preserves
the linear density power spectrum is reminiscent of the invariance of the energy velocity
spectrum (104). In both cases, one needs to consider higher-order correlations (or the full
distribution) to measure the effects of the nonlinearities.

In fact, the agreement of the exact density two-point function with the linear theory ac-
tually extends to all order cumulants 〈ηn〉c , computed at leading order from quasi-linear
theory. Indeed, at tree-order in perturbation theory, in the inviscid limit, it can be shown that
the cumulant-generating function ϕ(y), defined as in (110), is given by the implicit system

⎧⎨
⎩

τ = −yG′(τ )

ϕ(y) = yG(τ ) + τ2

2

with G(τ ) = F
[
−τ

σ (Gx)

σ (x)

]
= F [−τ G−1/2], (119)

where σ(x)2 = 〈δ2
L〉 = Dt2/x is the variance of the linear density contrast δL at scale x, and

the function F (δL) describes the evolution of spherical (here symmetric) density fluctuations
(see [7, 8, 45] for the similar case of the cosmological gravitational dynamics). The system
{τ, G} ↔ {y,ϕ} in (119) is actually a Legendre transform and it arises from a saddle-point
approximation. Indeed, in the quasi-linear limit (i.e. σ → 0, which also corresponds to t → 0
or x → ∞) the cumulant ratios Sn are governed by the tails of the density distribution and
the generating function ϕ(y) can be obtained from a steepest-descent method4 [45]. (In a
somewhat similar fashion, the minimization problem (3), that also arises from a saddle-
point method, can be written in terms of a Legendre transform of the Lagrangian potential,
see [6].) As compared with (69) of [45] we made the change σ [(1 + G)1/3x] → σ(Gx) by
taking 1 + G → G and the exponent 1/3 is changed to unity as we go from 3-D to 1-D. For
the present 1-D Burgers dynamics, we have:

η = q

x
= q

q + tv
, whence at linear order ηL = 1 − tv

q
and δL = −t

v

q
. (120)

This yields

F (δL) = 1

1 − δL

, whence G(τ ) = (−τ + √
τ 2 + 4)2

4
and ϕ(y) = √

1 + 2y − 1. (121)

Thus, we recover at tree-order the exact result (110). Therefore, for Brownian initial ve-
locity the Burgers dynamics happens to preserve the density cumulant-generating function
ϕ(y) that would be obtained at leading order (tree-order) from a perturbative approach,

4In fact, the steepest-descent method described in [45] is a non-perturbative approach, which can also be
applied to the other limit of rare events at finite σ , where it allows to go beyond perturbative methods [46].
However, in the quasi-linear limit σ → 0 it gives the same results for ϕ(y) as the usual perturbative expansion
over powers of the linear growing mode of the density field (provided the latter gives finite results in this
limit).
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which does not take into account collisions between particles (shell-crossings). This is also
why the ratios Sn are constants that apply to all scales, from the quasi-linear to the highly
nonlinear scales. Note that the perturbative approach breaks down beyond leading order as
next-to-leading corrections actually involve divergent integrals (which means that one can
no longer discard shocks, which requires non-perturbative methods). For other initial condi-
tions the coefficients Sn would no longer remain equal to their tree-order values. However,
they still asymptote to finite values in the highly nonlinear regime, because of the contribu-
tion from shocks, just as the Lagrangian and velocity increments scale linearly with � for
small distances � → 0, as discussed below (99)–(100) and (105).

7 Lagrangian Displacement Field

7.1 One-Point Distributions

We now consider the dynamics associated with the Burgers equation (1) from a Lagrangian
point of view. That is, labelling particles by their initial position q at time t = 0, we follow
their trajectory x(q, t) and we note χ(q, t) = x(q, t) − q their displacement with respect to
their initial location. Note that for regular points, which have kept their initial velocity, we
have χ = tv, see (2). Since particles do not cross each other they remain well-ordered. Then,
it is clear that the probability, pq(x

′ ≥ x), for the particle q to be to the right of the Eulerian
position x, at time t , is equal to the probability, px(q

′ ≤ q), for the Eulerian location x to
be “occupied” by particles that were initially to the left of particle q . (Since shocks have
zero measure in Eulerian space there are no ambiguities.) Therefore, we obtain in terms of
dimensionless variables, for the case q ≥ 0,

Q ≥ 0 : PQ(X′ ≥ X) = PX(Q′ ≤ Q) = PX(Q′ ≤ 0) + PX(0 ≤ Q′ ≤ Q)

= J (1,−2X) +
∫ +i∞

−i∞

ds

2π i
e(s−1)Q J (s,2X)

s − 1
, (122)

where we used the results of Sect. 4.1 and the integration contour runs to the right of the
pole s = 1. Therefore, the probability density of the Eulerian position X of particle Q reads
as

Q ≥ 0 : PQ(X) = − ∂

∂X
PQ(X′ ≥ X)

= − ∂

∂X

[
J (1,−2X) +

∫ +i∞

−i∞

ds

2π i
e(s−1)Q J (s,2X)

s − 1

]
. (123)

The case Q < 0 can be obtained from (123) through a reflection about the origin.
Let us consider more precisely the case of the particle that was initially at rest at the

origin, q = 0. Following the previous discussion, we have p0(x
′ ≥ x) = px(q

′ ≤ 0), hence
we can directly use (70)–(72) which give

X ≥ 0 : P0(X) = − ∂

∂X

∫ ∞

0
dν

6

ν2
Ai

[
ν2X + 1

ν2

]2

, P0(−X) = P0(X). (124)

At small X, we obtain from (124) the asymptotic

X → 0+ : P0(X) ∼ −4
√

3

π
lnX, (125)
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Fig. 10 (Color online) Left panel: The probability distribution, P0(X), of the reduced position X = x/(2Dt)

of the particle that was initially at the origin, q = 0, from (124). The dashed lines show the asymptotic
behaviors (125) and (126). Right panel: Same as left panel but on a logarithmic scale

whereas the behavior for large displacement X is set by the asymptotic (80), which yields

X → +∞ : P0(X) ∼ (
πX/(2

√
3)

)−1/2
e−4

√
3X. (126)

Thus, the central particle q = 0, that was initially at rest (v0(0) = 0), has moved by time t by
a distance χ = X whose distribution shows an exponential tail at large |X| and a logarithmic
peak at low |X|. We can note that both the large-X tail and the low-X divergence are different
from the asymptotics of the distribution of the Lagrangian coordinate, Q = −V , of the
particle located at the Eulerian location X = 0 at the same time, see (76)–(77). We show
in Fig. 10 the distribution P0(X) as well as the asymptotic behaviors (125) and (126). It
appears that the logarithmic asymptote is only reached at very low X.

Finally, far away from the origin, in the limit Q → ∞ at fixed χ = X − Q, we obtain
from (123) the asymptotic behavior (making the change of variable s = 1 + ik as for (79))

Q → +∞, |χ | � Q : PQ(χ) ∼ e−χ2/Q

√
πQ

. (127)

Therefore, we recover the property that far from the origin the displacement of the particles
is governed at leading order by the Gaussian distribution of the initial velocity field v0(q).
This agrees with the discussion presented below (79) in Sect. 4.3. Again, this expresses the
fact that at very large distances, where the initial velocity becomes increasingly large as√|q|, the motion with respect to the origin is dominated by the “large-scale flow” and the
local fluctuations of the initial velocity field have only produced local subdominant shifts,
see also [2, 23].

7.2 Two-Point Distributions

We now investigate the two-point probability distribution of the Lagrangian displacement
field. As for the one-point distribution (122), it is related to its Eulerian counterpart through

PQ1,Q2(X
′
1 ≥ X1,X

′
2 ≥ X2) = PX1,X2(Q

′
1 ≤ Q1,Q

′
2 ≤ Q2). (128)
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Using (79), (84), we obtain far away from the origin, in the limit Q1 → +∞ at fixed Q21 =
Q2 − Q1 > 0,

Q1 → +∞,Q21 > 0 : PQ1,Q2(X
′
1 ≥ X1,X

′
2 ≥ X2)

∼
∫ Q1

0
dQ′

1

∫ Q2

Q′
1

dQ′
2

∫ ∞

−∞

dk

2π
e−ik(X1−Q′

1)−X1k2/4

×
∫ +i∞

−i∞

ds

2π i
e(s−1)(Q′

2−Q′
1)e−(

√
s−1)2X21 . (129)

Integrating over Q′
1 and Q′

2 gives the cumulative distribution

Q1 → +∞,Q21 > 0 : PQ1,Q2(X
′
1 ≥ X1,X

′
2 ≥ X2)

∼
∫

dk

2π

∫ +i∞

−i∞

ds

2π i

e−ikX1−X1k2/4−(
√

s−1)2X21

(s − 1)(ik − s + 1)

×
[
eikQ1+(s−1)Q21 − e(s−1)Q2

]
. (130)

Then, taking the derivatives with respect to X1 and X2, and integrating over k, gives in the
limit Q1 → +∞, at finite χ1 = X1 − Q1, the probability density

Q1 → +∞,Q21 > 0 : PQ1,Q2(X1,X2)

∼ e−χ2
1 /Q1

√
πQ1

∫ +i∞

−i∞

ds

2π i
e(s−1)Q21−(

√
s−1)2X21

4

(
√

s + 1)2
. (131)

Thus, the comparison with (127) shows that we obtain as expected a factorization of the
form

Q1 → +∞,Q21 > 0 : PQ1,Q2(X1,X2) ∼ PQ1(X1)P Q21(X21), (132)

where the distribution, P Q21(X21), of the relative Eulerian distance X21 of the particles that
were initially separated by the distance Q21 reads as

Q ≥ 0,X > 0 : P Q(X) =
∫ +i∞

−i∞

ds

2π i
e(s−1)Q−(

√
s−1)2X 4

(
√

s + 1)2
. (133)

Therefore, we recover a factorization of the form (83) that was obtained in the Eulerian
framework. However, it is no longer exact at a finite distance from the origin and only
applies in the limit Q1 → ∞ (again, by symmetry we have a similar result for Q2 → −∞).

Multiplying (133) by e−4X and taking the derivative with respect to X we obtain a stan-
dard inverse Laplace transform [1]

d

dX

[
e−4XP Q(X)

] = −
∫ +i∞

−i∞

ds

2π i
e(s−1)Q 8e−(

√
s+1)2X

√
s + 1

= −8

[
1√
πQ

e
−( X√

Q
+√

Q)2 − erfc

(
X√
Q

+ √
Q

)]
, (134)
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Fig. 11 (Color online) Left panel: The probability density pq(x) that two particles, that were initially sep-
arated by a distance q , are separated by the distance x > 0 at time t (in the limit where the particles are
far from the origin). We show the reduced probabilities, PQ(X), in terms of the dimensionless variables

Q = q/(2Dt2) and X = x/(2Dt2), for three values of Q, from (135). The probability is zero for X < 0. For
large initial relative distance Q we recover a Gaussian of center Q and variance 〈(X − Q)2〉 = Q/2. Right
panel: The probability density PQ(X) on a logarithmic scale, for three values of Q

where erfc(z) is the complementary error function. This can be integrated to give

P Q(X) = 8

(
X + Q + 1

2

)
e4Xerfc

(
X√
Q

+ √
Q

)
− 8

√
Q

π
e

−( X√
Q

−√
Q)2

. (135)

Using the asymptotic expansion of the complementary error function [1] we obtain for large
Lagrangian separation, Q, and fixed relative displacement, χ = X − Q,

Q → +∞ : P Q(χ) ∼ 1√
πQ

e−χ2/Q. (136)

As for (79), (102), (127), we recover as expected the property that over large distances
particles are still governed at leading order by the initial Gaussian velocity field. Next, (135)
yields for the asymptotic behavior at large X for finite Q,

X → +∞ : P Q(X) ∼
√

Q

π

4

X
e

−( X√
Q

−√
Q)2 = 4

√
Q

π
e−QX−1e2X−X2/Q, (137)

whereas P Q(X) remains finite for X → 0+. We show our results for three values of Q

in Fig. 11, that clearly illustrate the evolution of P Q(X) with scale or time (smaller Q

corresponds to smaller scale or larger time). As for the Eulerian probability distribution, the
Gaussian tail (137) can be understood from a simple scaling argument applied to the initial
velocity field. Thus, the expansion of the initial Lagrangian interval q up to a very large size
x at time t requires an initial velocity increment of order v0 ∼ x/t (since x 
 q) which gives
rise to a probability of order e−(x/t)2/q ∼ e−X2/Q, using (8), which agrees with the large-X
tail (137).

From (135) we also obtain for the asymptotic behaviors of P Q(0+) with respect to Q

Q → 0 : P Q(0+) → 4, Q → +∞ : P Q(0+) ∼ 4√
π

Q−3/2e−Q. (138)
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However, note that the limits X → 0 and Q → 0 do not commute. Indeed, it is clear from
(135) that for any X > 0 we have P Q(X) → 0 for Q → 0. As we shall see below, this is
the signature of the contribution due to shocks. Thus, from (133) we obtain the cumulative
distribution as

Q ≥ 0,X > 0 : P Q(X′ ≥ X) =
∫ +i∞

−i∞

ds

2π i
e(s−1)Q 2e−(

√
s−1)2X

(s − 1)(
√

s + 1)
, �(s) > 1, (139)

where the integration path is located to the right of the pole at s = 1, so that P Q(X′ ≥X) → 0
for X → +∞. However, we note that it does not reach unity in the limit X → 0+, since we
have

Q ≥ 0 : lim
X→0+ P Q(X′ ≥ X) = 1 +

∫ +i∞

−i∞

ds

2π i
e(s−1)Q 2

(s − 1)(
√

s + 1)
, 0 < �(s) < 1,

(140)
where the integration path crosses the real axis in the range 0 < s < 1. This means that
there is a non-zero contribution due to shocks, where particles that were initially located at
different positions, q1 �= q2, have collided by time t and are now located at the same Eulerian
position, x1 = x2, in the same massive shock. Therefore, to the contribution (133) we must
add the contribution from shocks, that reads as

Q ≥ 0 : P
shock
Q (X) = P

shock
Q δ(X − 0+), with the amplitude

P
shock
Q =

∫ +i∞

−i∞

ds

2π i
e(s−1)Q 2

(1 − s)(
√

s + 1)
, 0 < �(s) < 1, (141)

so that the full probability is normalized to unity, see (140). Thus, the amplitude P
shock
Q

is the probability that two particles, that were initially separated by the (dimensionless)
distance Q, are both located in the same shock at time t (in the limit where the particles are
far from the origin, or anywhere on the right side for one-sided initial conditions). At large
initial Lagrangian separation Q, we obtain from (141) the exponential decay (that again can
be understood from simple scaling arguments)

Q → +∞ : P
shock
Q ∼ 1√

π
Q−3/2e−Q, (142)

whereas for small initial distance Q we have

Q → 0 : P
shock
Q ∼ 1 − 4

√
Q

π
. (143)

Therefore, in the limit Q → 0 the probability that both particles are within the same shock
reaches unity whereas the weight associated with the “regular” contribution (135) vanishes
(while its cutoff decreases as Q). This agrees with the well-known result that the set of
regular Lagrangian points has a Hausdorff dimension equal to 1/2 [41, 43], so that with
probability 1 a random Lagrangian point q belongs to a shock at any given time t > 0. This

clearly implies that P
shock
Q → 1 for Q → 0, as in (143). Moreover, the behavior 1 −P

shock
Q ∝

Q1/2 also shows that the set of regular Lagrangian points has a box-counting dimension
equal to 1/2, in agreement with these works.
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Fig. 12 (Color online) Left panel: The probability, pshock
q , that two particles, that were initially separated by

a distance q , have coalesced within a single shock by time t (in the limit where the particles are far from the

origin). We show the reduced probability, P
shock
Q , from (144). The dashed lines are the asymptotic behaviors

(142) and (143). Right panel: The probability P
shock
Q on a logarithmic scale

Taking the derivative of (141) yields again a standard inverse Laplace transform [1] that

provides a convenient integral expression for P
shock
Q ,

dP
shock
Q

dQ
= 2

[
erfc(

√
Q) − e−Q

√
πQ

]
, hence P

shock
Q = 2

∫ ∞

Q

dQ′
(

e−Q′
√

πQ′ − erfc(
√

Q′)
)

.

(144)

We show in Fig. 12 the same-shock probability P
shock
Q as a function of Q, as well as the

asymptotic behaviors (142) and (143).

7.3 Higher-Order Distributions

We can obtain the higher-order n-point distributions pq1,...,qn (x1, . . . , xn) by the same
method which we applied in the previous section for the two-point distribution. Thus, as
in (128), we can related the Lagrangian and Eulerian cumulative probabilities by

PQ1,...,Qn(X
′
1 ≥ X1, . . . ,X

′
n ≥ Xn) = PX1,...,Xn(Q

′
1 ≤ Q1, . . . ,Q

′
n ≤ Qn), (145)

with Q1 < Q2 < . . . < Qn and X1 < X2 < . . . < Xn. Then, in the limit Q1 → +∞, us-
ing again the factorization (87) and the expressions (79) and (84), we can integrate over
Q′

1, . . . ,Q
′
n. Differentiating with respect to X1, . . . ,Xn, gives the n-point probability den-

sity (compare with (131))

Q1 → ∞ : PQ1,...,Qn(X1, . . . ,Xn)

∼ e−χ2
1 /Q1

√
πQ1

∫ +i∞

−i∞

ds2 . . .dsn

(2π i)(n−1)
e(s2−1)Q2,1+...+(sn−1)Qn,n−1

× 2ne−(
√

s2−1)2X2,1−...−(
√

sn−1)2Xn,n−1

(1 + √
s2)(

√
s2 + √

s3) . . . (
√

sn−1 + √
sn)(

√
sn + 1)

, (146)

with Xi,i−1 = Xi − Xi−1, Qi,i−1 = Qi − Qi−1, �1 = X1 − Q1. Note that this n-point distri-
bution does not factorize.
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From (146) we can obtain the contributions associated with shocks in the same man-
ner as in Sect. 7.2. For instance, far from the origin (Q1 
 1), the probability density,

P
shock
Q21,Q32,Q43

(X32), that each pair {Q1,Q2}, and {Q3,Q4}, has coalesced within two shocks
that are separated by a distance in the range [X32,X32 + dX32], reads as

P
shock
Q21,Q32,Q43

(X32) =
∫ +i∞

−i∞

ds2ds3ds4

(2π i)3
e(s2−1)Q21+(s3−1)Q32+(s4−1)Q43

× 4e−(
√

s3−1)2X32

(s2 − 1)(
√

s2 + √
s3)(

√
s3 + √

s4)(s4 − 1)
, (147)

where the integration contour is such that �(s2) < 1, �(s3) > 1 and �(s4) < 1.

7.4 Computing the Density Power Spectrum from the Lagrangian Statistics

Finally, it is interesting to note that the statistics of the Lagrangian displacement field also
allow us to compute the Eulerian density power spectrum and to recover the result (113).
Indeed, as is well-known the conservation of matter implies that the density ρ(x) may be
written as

ρ(x) = ρ0

(
∂x

∂q

)−1

= ρ0

∫
dqδ(x − q − χ(q)), (148)

where χ(q) = x(q) − q is the Lagrangian displacement of particle q . Note that the last
expression is still valid when there are shocks, as may be seen by computing the mass within
some interval [x1, x2]. Going to Fourier space as in (112), we can write

〈ρ(k1)ρ(k2)〉 = ρ2
0

∫
dq1dq2

(2π i)2
e−i(k1q1+k2q2)〈e−i(k1χ1+k2χ2)〉. (149)

Then, in the regime where the invariance through translations is recovered (i.e. far from the
origin), making the changes of variables q2 = q1 + q and χ2 = χ1 + χ , we obtain

P(k) =
∫ ∞

0

dq

π

∫ ∞

0
dxpq(x) cos(kx) (150)

= γ 2
∫ ∞

0

dQ

π

∫ ∞

0+
dXP Q(X) cos(γ 2kX) + γ 2

∫ ∞

0

dQ

π
P

shock
Q . (151)

In the second line, written in terms of dimensionless variables, we separated the two contri-
butions associated with the regular part (135) and with the singular part (141) of the distribu-
tion of the relative Eulerian distance X. Using (133), we can check that the first contribution
actually vanishes (as expected since all the mass is enclosed within shocks, see (153) below
and [41, 43]), whereas the shock contribution is obviously independent of k and using (141)
we recover the amplitude (113).

8 Properties of Shocks

8.1 Shock Mass Function

From the probability pshock
q that two particles, initially separated by a distance q , are located

in the same shock at a time t > 0, we can now derive the mass function of shocks. First, we
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note that if a shock has Lagrangian end-points q− and q+, its mass is simply m = ρ0(q+ −
q−), where ρ0 is the uniform initial density, as discussed in Sect. 6. Then, within an interval
of length Q in Lagrangian space, we now count the number, QnQ(m)dm, of shock-intervals
of length in the range [q, q + dq], whence of mass in [m,m + dm], with m = ρ0q . The
limit Q → ∞ gives the probability density n(m) for a Lagrangian point to belong to a
shock of mass m. Since on large scales particles are still governed by the initial Gaussian
velocity field and have only moved by a relative distance χ ∼ √

Q, see for instance (136),
the corresponding Eulerian relative distance, X , obeys X /Q → 1 for Q → ∞. Therefore,
n(m)dm is also the mean number of shocks, per unit Eulerian length, with a mass in the
range [m,m + dm].

Let us now relate the mass function n(m) to the shock probability pshock
q that we obtained

in (141). The latter is the probability that a Lagrangian interval, q = q2 − q1, chosen at
random, has coalesced by time t within a single shock. This clearly means that this shock
has a length qs larger than q and that q1 is located within a distance smaller than qs − q

from its left boundary. Therefore, in terms of dimensionless variables, we have the relation

P
shock
Q =

∫ ∞

Q

dMN(M)(M − Q), with M = m

ρ0γ 2
. (152)

Here N(M) is the dimensionless mass function. From (152) and (143), taking Q = 0, we
obtain at once the normalization

∫ ∞

0
dMMN(M) = 1, (153)

which means that all the mass is included within shocks, at any time t > 0. This agrees with
previous results discussed below (143), see [41] and [43]. Differentiating twice (152) with
respect to Q, and using the first (144), gives the simple expression

N(M) = d2P
shock
Q

dQ2

∣∣∣∣∣
Q=M

, whence N(M) = 1√
π

M−3/2 e−M. (154)

Thus, we recover the low-mass power law M−3/2 that was already obtained in [41, 43]. At
large masses we obtain the exponential falloff that was heuristically derived in [51], follow-
ing the same scaling arguments as those described in previous sections for the tails of the
Eulerian or Lagrangian distributions. The full mass function (154) was also obtained in [9]
for the one-sided Brownian initial velocity. Indeed, in that case the Lagrangian increments
q21 have the same distribution for x ≥ 0, as discussed in Sect. 5.1, which clearly leads to
identical shock properties.

It is interesting to compare the exact result (154) with the Press-Schechter ansatz that
is widely used in the cosmological context to count the number of collapsed objects [38].
This model attempts to identify such objects from the properties of the linear fields, obtained
from the linearization of the equations of motion. For our case, this heuristic approach would
state that the fraction of matter, F(> m), that is enclosed within collapsed objects (here
infinitesimally thin shocks, as we consider the Burgers equation in the inviscid limit) of
mass larger than m, with m = ρ0q , is given by the probability that, choosing a Lagrangian
point qc at random, the linear-theory Eulerian relative distance xL at time t between the
particles qc + q/2 and qc − q/2 vanishes. (For a 3-dimensional Universe one considers the
probability the a sphere of mass m centered on qc has collapsed to a point.) In terms of
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dimensionless variables this reads as

F PS(≥ M) = P L
Q(XL ≤ 0) at M = Q, with P L

Q(XL) = e−(XL−Q)2/Q

√
πQ

, (155)

where P L refers to the distribution obtained by linear theory, where particles always keep
their initial velocity and shocks are discarded. This gives

F PS(≥ M) =
∫ ∞

√
M

dy
e−y2

√
π

. (156)

As usual, (156) implies F PS(≥ 0) = 1/2, which means that only half of the mass would be
within collapsed structures. Therefore, it is customary to multiply this by a somewhat ad-hoc
factor 2 [38]. Thus, differentiating with respect to M , the standard Press-Schechter recipe
gives in our case the mass function

2F PS(≥ M) =
∫ ∞

M

dMMNPS(M), whence NPS(M) = 1√
π

M−3/2 e−M. (157)

Therefore, we find that for the 1-D Burgers dynamics with Brownian initial velocity the
Press-Schechter ansatz happens to give the exact mass function (154). The agreement of
the Press-Schechter mass function at both small and large masses for the one-dimensional
case was already noticed in [51], for more general power-law initial velocity energy spectra
(although there were no exact results available at large masses but heuristic predictions).
This can be somewhat surprising in view of the many effects that could have made the
Press-Schechter ansatz fail (especially at the low-mass tail), such as the so-called “cloud-in-
cloud problem”, associated here with the fact that, even though particles qc ± q/2, evolved
according to linear theory, may have not collided yet, on a larger scale � > q it may happen
that particles qc ± �/2 had very large inward velocities and have formed by time t a massive
shock that includes the smaller scale q . Nevertheless, in the cosmological context, numerical
simulations have shown that, even though the Press-Schechter mass function is not exact, is
usually gives reasonably good estimates (e.g., [42]), so that it is still widely used today. It is
satisfying to find out that in a related dynamical system, it actually happens to coincide with
the exact result. This makes the reasonable agreement observed in other cases somewhat
less surprising than would be expected at first sight. As found in [51], this also suggests that
it could provide a reasonable estimate for the Burgers dynamics itself with more general
initial conditions.

8.2 Spatial Distribution of Shocks

Finally, from the n-point distributions (146) we can derive the many-body distributions of
shocks, far from the origin. Thus, in a fashion similar to (152), we can relate the trivariate
mass function, N(M1,M,M2;X)dM1dMdM2dX1dX, that counts the probability to have a
shock of mass M1 within [X1,X1 +dX1], another shock of mass M2 at distance [X,X+dX],
and a mass M in-between both shocks, to the three-point conditional shock probability,
P Q21,Q32,Q43 , of (147). This reads as

P Q21,Q32,Q43(X) =
∫ Q32

0
dM

∫ ∞

Q21

dM1

∫ ∞

Q43

dM2N(M1,M,M2;X)

∫ M1−Q21

0
dQ1

× θ(Q1+Q21+Q32−M1−M)θ(M1+M+M2−Q1−Q21−Q32−Q43),

(158)
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where the two Heaviside factors ensure that Q3 and Q4 are within the second shock of
mass M2. Then, differentiating with respect to Q21 and Q43 yields

∂2P Q21,Q32,Q43

∂Q21∂Q43
=

∫ Q32

0
dM

∫ Q43+Q32−M

Q43

dM2N(Q21+Q32+Q43 −M−M2,M,M2;X).

(159)
Taking the shifted Laplace transform of both quantities, in the form

N(M1,M,M2;X) =
∫ +i∞

−i∞

ds1dsds2

(2π i)3
e(s1−1)M1+(s−1)M+(s2−1)M2Ñ(s1, s, s2;X), (160)

and using (147), we obtain

Ñ(s1, s, s2;X) = 4(s − s1)(s − s2)e
−(

√
s−1)2X

(
√

s1 + √
s)(

√
s + √

s2)
. (161)

If we now consider the multiplicity of shocks at positions X1 and X2, independently of
the mass M in-between, we integrate over M and s, which gives the bivariate mass function
of shocks separated by a distance X:

N(M1,M2;X) =
∫ +i∞

−i∞

ds1ds2

(2π i)2
e(s1−1)M1+(s2−1)M2

4(1 − s1)(1 − s2)

(
√

s1 + 1)(1 + √
s2)

= N(M1)N(M2),

(162)
where we used (154) and (141) to recognize the product N(M1)N(M2). Therefore, we find
that the bivariate mass function n(m1,m2;x) does not depend on the inter-shock distance x

and merely factorizes as n(m1) × n(m2) (far from the origin x1 = 0).
Thus, shocks are not correlated and there is no bias: knowing that there is a shock of mass

m1 at position x1 does not bias in any way the shock multiplicity at position x2 = x1 + x.
We can note that this is consistent with the fact that the densities within separate regions are
uncorrelated, as seen in (114) and (115). In fact, from (115), which shows that the density
fields over separate regions are completely independent, we can see that this must extend to
all n-point shock mass functions, thus shocks at different positions are uncorrelated. The fact
that shocks form a Poisson point process was also obtained in [9] for the case of one-sided
Brownian velocity.

9 Conclusion

We have shown in this paper how to derive the equal-time statistical properties of the so-
lution of the Burgers equation with Brownian initial velocity, using the transition kernel
associated with Brownian particles over a parabolic absorbing barrier. This initial velocity
field is not homogeneous, as the initial velocity is Gaussian with a variance 〈v2

0〉 ∝ |x| at
distance |x|. However, it has homogeneous increments. Then, although the one-point dis-
tributions, px(v) and px(q), of the velocity v and initial Lagrangian position q , depend
on the position x, the two-point distributions exactly factorize provided that all spatial co-
ordinates remain on the same side of x = 0, such as px1,x2(v1, v2) = px1(v1)px21

(v21) and
px1,x2(q1, q2) = px1(q1)px21

(q21) for qi > 0. A similar factorization holds for higher-order
distributions. This agrees with the results that were obtained for the one-sided Brownian
initial velocity by [9]. In the limit where we are far from the origin, this implies that we
recover the invariance through translations for the distributions of velocity and Lagrangian
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increments. Then, we have focussed on the properties of the system in this limit, where
many simple explicit results can be derived.

As expected, we have found that on large scales, or at early times, all statistical properties
converge to the Gaussian distributions set by the initial conditions (the nonlinear evolution
being subdominant). On small scales, or at late times, the distributions of the velocity incre-
ment, Lagrangian increment, or mean overdensity η within a region of length x, increasingly
depart from the Gaussian. They exhibit widely separated exponential cutoffs, of the form
e−η and e−1/η , while a power law η−3/2 develops in the intermediate range. However, we
find that the variance of these distributions remains unchanged by the nonlinear dynamics,
that is, it is equal to the value that would be obtained by discarding collisions and shocks,
and letting particles cross each other and always keep their initial velocity. In particular, the
second-order velocity structure function and its energy spectrum do not evolve with time,
while the density correlation remains a Dirac function with an amplitude that grows as t2.

In fact, the densities within non-overlapping regions are uncorrelated and, at any order,
the n-point connected density correlation can be written as a product of n − 1 Dirac factors:
it is non-vanishing only when all points coincide. Then, it can also be written as a product
of n − 1 two-point correlations, that connect the n points, with a constant amplitude that
happens to be the number of heap ordered trees. This allows a combinatorial interpretation
that is similar to the hierarchical tree models that were devised as a phenomenological tool in
the cosmological context, with the difference that in our case we must consider ordered trees
(note that in the present 1-D system, where particles do not cross, it is meaningful to order
particles by their positions so that the concept of ordering appears rather natural). Then, the
cumulants of the overdensity exactly scale as 〈ηn〉c ∝ 〈η2〉(n−1)

c , with an amplitude that is
independent of time and scale. Thus, they happen to exactly satisfy the so-called “stable-
clustering ansatz”. In fact, the density cumulant-generating function remains exactly equal
to the one obtained at tree-order from a perturbative approach (which breaks down beyond
leading order as next-to-leading corrections actually are divergent, which signals the need
for a non-perturbative method that takes into account shocks).

We have also studied the Lagrangian displacement field, associated with a Lagrangian
description of the dynamics. In the limit where we are far from the origin, we find that
it satisfies a similar factorization and recovers the invariance through translations for the
distributions of relative displacements. This also allows us to derive the properties of shocks.
Thus, in agreement with previous works, we find that all of the mass is enclosed within
shocks, at any time t > 0, and that the shock mass function has the very simple expression
(154). It agrees with the asymptotic behaviors that were already obtained through analytical
means or numerical simulations in [41, 43] or [51] and the exact result of [9]. Finally, shocks
are not correlated as the bivariate multiplicity function n(m1,m2;x), that counts shocks of
mass m1 and m2 separated by the distance x, factorizes as n(m1) × n(m2), in agreement
with the same lack of correlation obtained for the density field.

Thus, the equal-time statistical properties of the Burgers dynamics with Brownian ini-
tial velocity are remarkably simple. It appears that the nonlinear dynamics preserves some
properties of the initial fields (e.g. the second-order structure functions, the independence
and homogeneity of velocity increments and of the densities in separate domains) and that
simple explicit expressions can be derived in the limit where we are far from the origin (or
on the right side for one-sided initial conditions).

At finite distance from the origin, in addition to the quantities given here we need the
two-point distribution associated with the case where the two particles are on different sides
of the origin x = 0. Although we can obtain explicit expressions by the method presented in
this article, this leads to multidimensional integrals that do not seem to greatly simplify
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(although we obtained simple expressions for the one-point distributions). However, for
practical purposes, one is mostly interested in the limit where we are far from the origin and
homogeneity is recovered. From a physical point of view, the initial conditions (5) are meant
to represent a system with homogeneous velocity increments, which scale as 〈(�v0)

2〉 ∝
|�q| as in (9) over a finite range, and an energy spectrum E0(k) ∝ k−2 as in (10) over the
range of interest. Thus, in practice there would be an infrared cutoff, �, below which E0(k)

would grow more slowly than 1/k so that the velocity field is actually homogeneous (in
an experimental setup there would actually be a finite lower wavenumber, set by the size
of the box, and homogeneity would only apply far from the boundaries). Then, the initial
conditions (5) studied in this article can be viewed as a convenient mathematical device to
represent such a system, with the understanding that the special role played by the origin is
a mathematical artifact and that only the properties far from the origin are meaningful in the
physical sense described above. Note that this identification is possible because small scales
are not strongly coupled to large scales, in agreement with the fact that over large scales we
recover the initial fields and no strong correlations develop.

To put this study in a broader context, it may be useful to recall here the main properties
of “decaying Burgers turbulence” for more general Gaussian initial conditions. It is custom-
ary to study the Burgers dynamics (1) for power-law energy spectra, E0(k) ∝ kn (here we
focussed on the case n = −2, see (10)). Indeed, at late times the asymptotic statistical prop-
erties of the velocity field no longer depend on the details of the high-k spectrum (assuming
a strong enough falloff) nor on the precise value of the viscosity ν, as a self-similar evolu-
tion develops [22, 35]. Then, depending on the exponent n, the integral scale of turbulence,
L(t), which measures the typical distance between shocks and the correlation length, and
the shock and velocity probability distributions show the following behaviors.

For −3 < n < −1 (which includes the case n = −2 studied in this article, associated
with a Brownian initial velocity), the initial velocity is not homogeneous but it has ho-
mogeneous increments, while for −1 < n < 1 (which includes the case n = 0 associated
with a white-noise initial velocity), the initial velocity itself is homogeneous. In both cases,
the integral scale grows as L(t) ∼ t2/(n+3), and the tails of the cumulative shock distrib-
ution and velocity distribution satisfy ln[n(> m)] ∼ −mn+3, ln[n(> |v|)] ∼ −|v|n+3, for
m → ∞, |v| → ∞, see [34, 41]. At low wavenumbers, below 1/L(t), the energy spectrum
keeps its initial form, E(k, t) ∝ kn, whereas at high wavenumbers it shows the universal law,
E(k, t) ∝ k−2, due to shocks [26, 36]. The preservation of the large-scale part, E(k, t) ∝ kn,
is associated with the “principle of permanence of large eddies” [26]. Physically, this means
that, at a given time t , structures of size larger than L(t) have not had time to be strongly dis-
torted by the dynamics (in agreement with the simple scaling argument tσv0(x) � x which
gives x 
 L(t)). In particular, not only statistical properties but each random realization
is stable against small-scale perturbations [2, 23]. Then, the tails of the shock and velocity
distributions can be understood from the initial velocity field. Thus, the velocity difference
between the left and right boundaries of a shock of mass m = ρ0q is q/t , which leads to
a probability ∼e−(q/t)2/σv0 (q)2 ∼ e−mn+3/t2

(where we did not write constants in the expo-
nent) [51]. We can check that these properties agree with the results derived for n = −2 in
this paper.

For 1 < n < 2 the system shows a more complex behavior, since there are three scaling
regions for the energy spectrum: first a kn region at very low wavenumbers, below ks(t) ∼
t−1/2(2−n), next a k2 region between ks(t) and kL(t) ∼ t−1/2, and finally the standard k−2

region above kL(t) [26]. Therefore the evolution is no longer self-similar. For n > 2 the kn

region disappears (it gives subdominant corrections) and the leading-order evolution is again
self-similar but independent of n [24, 26].
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We can hope that the exact results presented in this article for the case of Brownian
initial velocity could serve as a useful benchmark to test approximation schemes which
could be devised to handle other initial conditions where no exact results are available. In
particular, in the cosmological context, the Zeldovich approximation, which corresponds
to removing the diffusive term altogether, has already been used to test for instance field-
theoretic methods that attempt to resum perturbative series [47]. The Burgers equation in
the inviscid limit, which corresponds to the more efficient adhesion model, might also be
used for such purposes. In a similar fashion, the general properties of the Burgers dynamics
(associated with shocks) have already been used to test approximation schemes devised for
the study of turbulence [16].

Finally, we note that the method described in this article could also be applied to
different-time statistics, where the parabolas used in the geometrical interpretations would
now have different curvatures. However, we leave such studies for future works.

Appendix A: Some Properties of the Airy Functions

We recall here some properties of the Airy functions Ai(x) and Bi(x) that are used repeat-
edly in the calculations presented in this article. These two Airy functions are two linearly
independent solutions to the second-order differential equation y ′′(x)− xy(x) = 0. The first
one, Ai(x), is the only solution that vanishes at both ends, x → ±∞, whereas Bi(x) grows
to infinity at x → +∞ [1]. Both are entire functions and they are related through

Bi(x) = eiπ/6Ai(ei2π/3x) + e−iπ/6Ai(e−i2π/3x), (163)

while their Wronskian is constant and given by

Ai(x)Bi′(x) − Ai′(x)Bi(x) = 1

π
. (164)

We also have the integral representation [1]

Ai(x) =
∫ ∞

−∞

dt

2π
ei( t3

3 +xt). (165)

At x = 0 we have

Bi(0)√
3

= Ai(0) = 1

32/3�[2/3] ,
−Bi′(0)√

3
= Ai′(0) = −1

31/3�[1/3] , (166)

and for |x| → ∞:

|Arg(x)| < π : Ai(x) ∼ 1

2
√

π
x−1/4e− 2

3 x3/2
, (167)

|Arg(x)| < 2π

3
: Ai(−x) ∼ 1√

π
x−1/4 sin

[
2

3
x3/2 + π

4

]
, (168)

|Arg(x)| < π

3
: Bi(x) ∼ 1√

π
x−1/4e

2
3 x3/2

, (169)

|Arg(x)| < 2π

3
: Bi(−x) ∼ 1√

π
x−1/4 cos

[
2

3
x3/2 + π

4

]
. (170)
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For |Arg(x)| < 2π/3, the Airy function can also be expressed in terms of the modified
Bessel function of the second kind Kν as

|Arg(x)| < 2π

3
: Ai(x) = 1

π

√
x

3
K1/3

(
2

3
x3/2

)
, Ai′(x) = −x

π
√

3
K2/3

(
2

3
x3/2

)
.

(171)

Four useful integrals, that may be obtained from the integral representation (165), are [50]

∫ ∞

−∞
dxeαxAi(x) = eα3/3, whence

∫ ∞

−∞
dxeαxxAi(x) = α2eα3/3, (172)

ν1 �= ν2 :
∫ ∞

−∞
duAi

[
ν1u + s1

ν2
1

]
Ai

[
ν2u + s2

ν2
2

]

= 1

|ν3
1 − ν3

2 |1/3
Ai

[
(ν3

1 − ν3
2 )

−1/3

(
ν1s2

ν2
2

− ν2s1

ν2
1

)]
, (173)

and

ν1 �= ν2 :
∫ ∞

−∞
duuAi

[
ν1u + s1

ν2
1

]
Ai

[
ν2u + s2

ν2
2

]

= s2 − s1

(ν3
1 − ν3

2 )
4/3

Ai

[
(ν3

1 − ν3
2 )

−1/3

(
ν1s2

ν2
2

− ν2s1

ν2
1

)]
, (174)

with the conventions: (ν3
1 − ν3

2 )
−1/3 → −(ν3

2 − ν3
1 )

−1/3 and (ν3
1 − ν3

2 )
4/3 → −(ν3

2 − ν3
1 )

4/3 if
ν1 < ν2. This also implies the relation

ν1 �= ν2 :
∫ ∞

−∞
duuAi

[
ν1u + s1

ν2
1

]
Ai

[
ν2u + s2

ν2
2

]

= s2 − s1

ν3
1 − ν3

2

∫ ∞

−∞
duAi

[
ν1u + s1

ν2
1

]
Ai

[
ν2u + s2

ν2
2

]
, (175)

that could be obtained from the property Ai′′(x) = xAi(x).
Finally, using the property [21]

μ > ν,α + β > 0 :
∫ ∞

0
dxxμ−1e−αxKν(βx) =

√
π(2β)ν

(α + β)μ+ν

�(μ + ν)�(μ − ν)

�(μ + 1
2 )

× 2F1

(
μ + ν, ν + 1

2
;μ + 1

2
; α − β

α + β

)
,

(176)
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and the relations (171), we obtain

ν > 0, α + β > 0 :
∫ ∞

0
dxxν−1e−αxAi

[(
3βx

2

)2/3]

= 1√
π

3−1/6β2/3(α + β)−ν− 2
3
�(ν + 2

3 )�(ν)

�(ν + 5
6 )

×2F1

(
ν + 2

3
,

5

6
;ν + 5

6
; α − β

α + β

)
, (177)

ν > 0, α + β > 0 :
∫ ∞

0
dxxν−1e−αxAi′

[(
3βx

2

)2/3]

= −1√
π

31/6β4/3(α + β)−ν− 4
3
�(ν + 4

3 )�(ν)

�(ν + 7
6 )

×2F1

(
ν + 4

3
,

7

6
;ν + 7

6
; α − β

α + β

)
. (178)

Appendix B: Half-Range Expansion and Useful Integrals

We show in this appendix how to obtain the solution (34) to the half-range expansion prob-
lem (32)–(33). The same method also allows us to derive other useful identities that we need
to perform the calculations presented in this article. Thus, we consider the function f (p) of
the complex variable p defined by

s ≥ 0, u ≥ 0, |Arg(p)| < π : f (p) = p−1/6e
2
3 s3/2/pAi

[
p1/3u + s

p2/3

]
. (179)

This function is regular over the complex plane except for a branch cut along the negative
real axis. Moreover, from the asymptotic behavior (167) of the Airy function we obtain

u > 0 : f (p) ∼ u−1/4

2
√

π
p−1/4e− 2

3 u3/2p1/2
as |p| → ∞ with |Arg(p)| < π, (180)

and

u = 0 : f (p) ∼ Ai(0)p−1/6 as |p| → ∞ with |Arg(p)| < π. (181)

Next, we introduce the general integral Fk,�(ν1, . . . , νk;λ1, . . . , λ�) defined by

Fk,�(νi;λj ) =
∫ c+i∞

c−i∞

dp

2π i

f (p)∏k

i=1(p − ν3
i )

∏�

j=1(p + λ3
j )

with c > max
i

{ν3
i }, (182)

with the conditions

νi > 0, νi �= νi′ for i �= i ′; λj > 0, λj �= λj ′ for j �= j ′; k + � ≥ 1. (183)
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If k = 0 or � = 0 one of the products in (182) is removed and replaced by a factor 1. If k = 0
the contour in (182) again runs to the right of all singularities, that is c > 0.

Then, from the asymptotics (180)–(181), we can see that we can push the contour in
(182) to the right, as c → +∞, which shows that Fk,� = 0 (using k + � ≥ 1). On the other
hand, by pushing the contour to the left, using again the asymptotics (180)–(181), we can
see that Fk,� is the sum of the k residues at p = ν3

i and of the contribution associated with
the branch cut along the negative real axis. This yields

0 =
k∑

i=1

ν
− 1

2
i e

2
3 s3/2ν−3

i Ai[νiu + s

ν2
i

]
∏

j �=i (ν
3
i − ν3

j )
∏

j (ν
3
i + λ3

j )
+

∫
C

dp

2π i

p− 1
6 e

2
3 s3/2/pAi[p1/3u + s

p2/3 ]∏
j (p − ν3

j )
∏

j (p + λ3
j )

, (184)

where C is the anticlockwise Hankel contour that bends around the negative real axis. Then,
pushing the contour towards both sides of the negative real axis, making the change of
variable p = −μ3 ± iε with μ > 0 and ε → 0+, and using [1]

Ai[e±i2π/3x] = 1

2
e±iπ/3[Ai(x) ∓ iBi(x)], (185)

as well as the Sokhatsky-Weierstrass theorem, written here in concise form as

lim
ε→0+

1

μ3 − ν3 + iε
= p.v.

1

μ3 − ν3
− iπ

3μ2
δ(μ − ν), (186)

we obtain

u ≥ 0 : p.v.

∫ ∞

0

dμ

2π

3μ3/2e− 2
3 s3/2μ−3

Ai[−μu + s

μ2 ]∏k

j=1(μ
3 + ν3

j )
∏�

j=1(μ
3 − λ3

j )

=
k∑

i=1

ν
− 1

2
i e

2
3 s3/2ν−3

i Ai[νiu + s

ν2
i

]
∏

j �=i (−ν3
i + ν3

j )
∏

j (−ν3
i − λ3

j )

+ 1

2

�∑
i=1

λ
− 1

2
i e− 2

3 s3/2λ−3
i Bi[−λiu + s

λ2
i

]
∏

j (λ
3
i + ν3

j )
∏

j �=i (λ
3
i − λ3

j )
. (187)

Here, the symbol p.v. stands for the Cauchy principal value and must be understood with
respect to μ3 (rather than μ). That is, the integrals are regularized by cutting around each
pole λj the interval [μ−,μ+], with μ3± = λ3

j ± ε, which is symmetric in terms of μ3 around
λ3

j , and taking the limit ε → 0+. If � = 0 the integral is regular and there is no need to
introduce the principal value. In particular, the case k = 1 and � = 0 yields, with ν > 0,

u ≥ 0 :
∫ ∞

0

dμ

2π

3μ3/2

μ3 + ν3
e− 2

3 s3/2μ−3
Ai

[
−μu + s

μ2

]
= ν−1/2e

2
3 s3/2ν−3

Ai

[
νu + s

ν2

]
.

(188)

This implies that φs,ν(r, u) defined by (34) is the solution of the form (32) that satisfies the
constraint (33). Note that the restriction to u ≥ 0 is essential. For instance, as Arg(u) grows
from 0, the function f (p) displays an exponential growth for π − 3Arg(u) < Arg(p) < π

and we can no longer bend the integration contour onto the negative real axis.
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Alternatively, as in [11], we can obtain (188) from the analysis of [31] and [32], or of [27],
who studied several problems associated with the Klein-Kramers equation, by taking the
limit of zero friction. However, these problems lead to discrete spectra and require a so-
phisticated analysis that involves infinite products to handle the poles associated with all
eigenvalues.

Finally, making the change k → k + 1 and taking the limit νk+1 → 0+ in (187) gives the
useful identity

u ≥ 0 : p.v.

∫ ∞

0

dμ

2π

3μ−3/2e− 2
3 s3/2μ−3

Ai[−μu + s

μ2 ]∏k

j=1(μ
3 + ν3

j )
∏�

j=1(μ
3 − λ3

j )

= s− 1
4 e−√

su

2
√

π
∏

j ν3
j

∏
j (−λ3

j )
−

k∑
i=1

ν
− 7

2
i e

2
3 s3/2ν−3

i Ai[νiu + s

ν2
i

]
∏

j �=i (−ν3
i + ν3

j )
∏

j (−ν3
i − λ3

j )

+ 1

2

�∑
i=1

λ
− 7

2
i e− 2

3 s3/2λ−3
i Bi[−λiu + s

λ2
i

]
∏

j (λ
3
i + ν3

j )
∏

j �=i (λ
3
i − λ3

j )
. (189)

Equation (189) now applies to any k ≥ 0, � ≥ 0. In particular, the case k = � = 0 yields

u ≥ 0 : e−√
su = s1/4

∫ ∞

0

dμ√
π

3μ−3/2e− 2
3 s3/2μ−3

Ai

[
−μu + s

μ2

]
. (190)

Note that s can be absorbed in (190) through the change of variables v = √
su and ν =

μ/
√

s. By letting m parameters νi going to zero in a sequential manner, we could derive a
series of similar identities for integrals of the form of (189) with a prefactor μ3/2−3m for any
m ≥ 0. However, in this article we do not need to go beyond m = 1 as in (189)–(190).

In a similar fashion, we now consider the function f̂ (p) of the complex variable p de-
fined for si ≥ 0, ui ≥ 0, by

f̂ (p) = e
2
3 (s

3/2
1 −s

3/2
2 )/pAi′

[
p1/3u1 + s1

p2/3

]
Ai

[
e−iπ/3p1/3u2 + ei2π/3 s2

p2/3

]
. (191)

It has a branch cut along the negative real axis and it grows as most as p1/12 for |p| → ∞
and 0 < Arg(p) < π . Then, in a manner similar to (182), we introduce the integral
F̂k,�(ν1, . . . , νk;λ1, . . . , λ�) defined by

F̂k,�(νi;λj ) =
∫ ∞+ic

−∞+ic

dp

2π

f̂ (p)∏k

i=1(p − ν3
i )

∏�

j=1(p + λ3
j )

with c > 0, (192)

with the conditions

νi > 0, νi �= νi′ for i �= i ′; λj > 0, λj �= λj ′ for j �= j ′; k + � ≥ 2.

(193)

Note that the integration contour is now parallel to the real axis, in the upper half-plane,
and that the asymptotic behavior of f̂ (p) for large |p|, with 0 < Arg(p) < π , now requires
k+� ≥ 2. Pushing the contour upward, as c → +∞, we can see that F̂k,� = 0. Next, pushing
the contour towards the real axis, by making the change of variable p = ±μ3 + iε with μ > 0
and ε → 0+, and using (185), that also yields

Ai′[e±i2π/3x] = 1

2
e∓iπ/3[Ai′(x) ∓ iBi′(x)], (194)
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as well as (186), we obtain after taking the real part

ui ≥ 0 : p.v.

∫ ∞

−∞

dμ

2π

3μ2e− 2
3 (s

3/2
1 −s

3/2
2 )μ−3

Ai′[−μu1 + s1
μ2 ]Ai[μu2 + s2

μ2 ]∏k

j=1(μ
3 + ν3

j )
∏�

j=1(μ
3 − λ3

j )

= −1

2

k∑
i=1

e
2
3 (s

3/2
1 −s

3/2
2 )ν−3

i Ai′[νiu1 + s1
ν2
i

]Bi[−νiu2 + s2
ν2
i

]
∏

j �=i (−ν3
i + ν3

j )
∏

j (−ν3
i − λ3

j )

+ 1

2

�∑
i=1

e− 2
3 (s

3/2
1 −s

3/2
2 )λ−3

i Bi′[−λiu1 + s1
λ2
i

]Ai[λiu2 + s2
λ2
i

]
∏

j (λ
3
i + ν3

j )
∏

j �=i (λ
3
i − λ3

j )
. (195)

Taking the imaginary part gives another identity, that involves the integral over μ of prod-
ucts Bi′Ai and Ai′Bi, which we do not need for the present calculations. Again, in (195)
the Cauchy principal value is understood with respect to μ3. Exchanging the derivative in
expression (191), we obtain an identity similar to (195) where the derivatives are exchanged:

ui ≥ 0 : p.v.

∫ ∞

−∞

dμ

2π

3μ2e− 2
3 (s

3/2
1 −s

3/2
2 )μ−3

Ai[−μu1 + s1
μ2 ]Ai′[μu2 + s2

μ2 ]∏k

j=1(μ
3 + ν3

j )
∏�

j=1(μ
3 − λ3

j )

= −1

2

k∑
i=1

e
2
3 (s

3/2
1 −s

3/2
2 )ν−3

i Ai[νiu1 + s1
ν2
i

]Bi′[−νiu2 + s2
ν2
i

]
∏

j �=i (−ν3
i + ν3

j )
∏

j (−ν3
i − λ3

j )

+ 1

2

�∑
i=1

e− 2
3 (s

3/2
1 −s

3/2
2 )λ−3

i Bi[−λiu1 + s1
λ2
i

]Ai′[λiu2 + s2
λ2
i

]
∏

j (λ
3
i + ν3

j )
∏

j �=i (λ
3
i − λ3

j )
. (196)

Next, making the change k → k + 1 and taking the limit νk+1 → 0 gives, for k + � ≥ 1,

ui ≥ 0 : p.v.

∫ ∞

−∞

dμ

2π

3μ−1e− 2
3 (s

3/2
1 −s

3/2
2 )μ−3

∏
j (μ

3 + ν3
j )

∏
j (μ

3−λ3
j )

×
[

Ai′
(

−μu1+ s1

μ2

)
Ai

(
μu2+ s2

μ2

)
− AiAi′

]

= 1

4π

[(
s1

s2

)1/4

+ ( s1

s2

)−1/4
]

e−√
s1u1−√

s2u2∏
j ν3

j

∏
j (−λ3

j )

+ 1

2

k∑
i=1

ν−3
i e

2
3 (s

3/2
1 −s

3/2
2 )ν−3

i∏
j �=i (−ν3

i +ν3
j )

∏
j (−ν3

i −λ3
j )

×
[

Ai′
(

νiu1+ s1

ν2
i

)
Bi

(
−νiu2+ s2

ν2
i

)
− AiBi′

]

+ 1

2

�∑
i=1

λ−3
i e− 2

3 (s
3/2
1 −s

3/2
2 )λ−3

i∏
j (λ

3
i +ν3

j )
∏

j �=i (λ
3
i −λ3

j )

×
[

Bi′
(

−λiu1+ s1

λ2
i

)
Ai

(
λiu2+ s2

λ2
i

)
− BiAi′

]
. (197)
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Here we combined both (195)–(196), and in each bracket the second product, such as AiAi′,
is equal to the first product where we exchange the derivative. Next, for the case u1 = u2 = 0,
we again make the change k → k+1 and take the limit νk+1 → ∞. This yields for any k ≥ 0,
� ≥ 0,

p.v.

∫ ∞

−∞

dμ

2π

3μ−1e− 2
3 (s

3/2
1 −s

3/2
2 )μ−3

∏
j (μ

3+ν3
j )

∏
j (μ

3−λ3
j )

[
Ai′

(
s1

μ2

)
Ai

(
s2

μ2

)
− AiAi′

]

= −δk+�,0

2π
+

(
s1
s2

)1/4 + (
s1
s2

)−1/4

4π
∏

j ν3
j

∏
j (−λ3

j )
+ 1

2

k∑
i=1

ν−3
i e

2
3 (s

3/2
1 −s

3/2
2 )ν−3

i∏
j �=i (−ν3

i +ν3
j )

∏
j (−ν3

i −λ3
j )

×
[

Ai′
(

s1

ν2
i

)
Bi

(
s2

ν2
i

)
− AiBi′

]

+ 1

2

�∑
i=1

λ−3
i e− 2

3 (s
3/2
1 −s

3/2
2 )λ−3

i∏
j (λ

3
i +ν3

j )
∏

j �=i (λ
3
i −λ3

j )

[
Bi′

(
s1

λ2
i

)
Ai

(
s2

λ2
i

)
− BiAi′

]
, (198)

where we used the Wronskian property (164) and δk+�,0 is the Kronecker symbol. In partic-
ular, for k = � = 0 we obtain

∫ ∞

−∞

dμ

μ
e− 2

3 (s
3/2
1 −s

3/2
2 )μ−3

[
Ai′

(
s1

μ2

)
Ai

(
s2

μ2

)
− AiAi′

]
= 1

6

[(
s1

s2

)1/4

+
(

s1

s2

)−1/4

− 2

]
.

(199)

Since the integral is convergent at μ = 0 there is no need to use the principal value.

Appendix C: Computation of the Two-Point Distribution

We present here the computation of the two-point distribution (82) from the two contribu-
tions p> and p< described in Figs. 4 and 5.

Let us first consider the contribution p>. In a fashion similar to (55), using the Markovian
character of the process q �→ {ψ,v}, it reads as

p>
x1,x2

(0 ≤ q ′
1 ≤ q1, c1;q ′

2 ≥ q2)dc1

= lim
q±→±∞

∫
dψ−dv−Kx1,c1(0,0,0;q−,ψ−, v−)

×
∫

dψ1dv1[Kx1,c1(0,0,0;q1,ψ1, v1) − Kx1,c1+dc1(0,0,0;q1,ψ1, v1)]

×
{∫

dψ+dv+Kx1,c1(q1,ψ1, v1;q+,ψ+, v+)−
∫

dψ2dv2Kx1,c1(q1,ψ1, v1;q2,ψ2, v2)

×
∫

dψ+dv+Kx2,c2(q2,ψ2, v2;q+,ψ+, v+)

}
. (200)
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Then, we recognize px1(0 ≤ q ′
1 ≤ q1) in the contribution associated with the first term in the

bracket, and we can write

p>
x1,x2

(0 ≤ q ′
1 ≤ q1;q ′

2 ≥ q2) = px1(0 ≤ q ′
1 ≤ q1) − p̂>

x1,x2
(0 ≤ q ′

1 ≤ q1;q ′
2 ≥ q2), (201)

where we introduced the remaining part

p̂>
x1,x2

(0 ≤ q ′
1 ≤ q1, c1;q ′

2 ≥ q2)dc1

= lim
q±→±∞

∫
dψ−dv−dψ1dv1dψ2dv2dψ+dv+

× Kx1,c1(0,0,0;q−,ψ−, v−)[Kx1,c1(0,0,0;q1,ψ1, v1)−Kx1,c1+dc1(0,0,0;q1,ψ1, v1)]
× Kx1,c1(q1,ψ1, v1;q2,ψ2, v2)Kx2,c2(q2,ψ2, v2;q+,ψ+, v+). (202)

In (201) we have also integrated p̂> over c1.
We can note that p>

x1,x2
and p̂>

x1,x2
satisfy the following boundary conditions. First, taking

the derivative with respect to q1 to obtain the probability density p>
x1,x2

(q1;q ′
2 ≥ q2), we have

lim
q2→q+

1

p>
x1,x2

(q1;q ′
2 ≥ q2) → px1(q1), whence lim

q2→q+
1

p̂>
x1,x2

(q1;q ′
2 ≥ q2) = 0. (203)

Indeed, following the discussion at the beginning of Sect. 5.1, if ψ0(q) is tangent to Px1,c1 at
q1, the second parabola Px2,c2 can only cross the first one at a point q∗ > q1 (otherwise, ψ ′

0
being continuous, if we had q∗ = q1 the curve ψ0(q) would go below Px2,c2 just beyond q1).
Then, all curves tangent to Px1,c1 at q1 satisfy both properties q∗ > q1 and q2 > q1, so that
they are all included in the contribution p>

x1,x2
as we take the limit q2 → q+

1 and we must
recover px1(q1), as stated in (203). Second, for large q2 we obviously have the asymptotics

lim
q2→+∞p>

x1,x2
(0 ≤ q ′

1 ≤ q1;q ′
2 ≥ q2) = 0, lim

q2→+∞ p̂>
x1,x2

(0 ≤ q ′
1 ≤ q1;q ′

2 ≥ q2) = px1(q1).

(204)
This latter constraint can be directly checked on (202).

Using the transformations (17) and (20), we obtain

p̂>
x1,x2

(0 ≤ q ′
1 ≤ q1;q ′

2 ≥ q2)

= e
û21
γ − q2

γ 2

∫
dr1du1dr2du2dr3H∞(r3, û1)

× �(q1; r3,−û1; r1, u1)G(q2 − q1; r1, u1; r2, u2 + û21)H∞(r2, u2), (205)

where we introduced as in (57) the quantities

ûi =
√

2

D

xi

t
, û21 = û2 − û1. (206)

Next, taking the derivative with respect to q1, using the backward equation (37) for G and
the forward equation (22) that is also satisfied by �, we obtain a total differential over r1,
which only leaves the boundary term at r1 = 0:

p̂>
x1,x2

(q1;q ′
2 ≥ q2) = e

û21
γ − q2

γ 2

∫
du1dr2du2dr3H∞(r3, û1)u1�(q1; r3,−û1;0, u1)

× G(q2 − q1;0, u1; r2, u2 + û21)H∞(r2, u2). (207)
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We can check from the explicit expressions of � and G that the integrations by parts leading
to (207) are valid. The expression (207) clearly satisfies the property (203). Indeed, for
q2 → q+

1 the factor G implies r2 → 0, using the first boundary condition (23), which in
turns leads to u2 + û21 ≤ 0 because of the second boundary condition in (23). However, the
last factor H∞ also implies u2 ≥ 0, using the boundary condition (39) applied to H∞. Since
û21 > 0 both constraints on u2 cannot be simultaneously satisfied which leads to (203). This
can also be checked on (207) using the explicit expressions of � and H∞.

Then, using the explicit expressions of G,�, and H∞, and the results of Appendices A
and B, it is possible to greatly simplify (207). Indeed, the integrals over ri are immediate
(they only involve factors of the form e−ν3r ) whereas the integral over u1 can be transformed
using (175). Next, integrals over ui are typically split over ui ≤ 0 and ui ≥ 0, and each factor
of the form Ai(−μui + s/μ2) with ui ≥ 0, or Ai(μui + s/μ2) with ui ≤ 0, can be integrated
over μ using the results (187)–(190) of Appendix B. This leads to products of the form
Ai(μui + s1/μ

2)Ai(μui + s2/μ
2) that can be integrated over ui using the primitive (63),

that also extends to the second Airy function Bi. Then, these terms can be further simplified
using the Wronskian (164) and the results (195)–(199) of Appendix B. We eventually obtain
in terms of dimensionless variables

P̂ >
X1,X2

(Q1,Q
′
2 ≥ Q2) =

∫ +i∞

−i∞

ds1ds2

(2π i)2
e(s1−1)Q1+(s2−1)Q21J (s1,2X1)I (s2,2X21), (208)

with

Q1 ≥ 0, Q21 = Q2 − Q1 ≥ 0, and I (s,2X) = 1

s − 1
e−( 2

3 s3/2−s+ 1
3 )2X/(s−1). (209)

We can check that (208) agrees with both constraints (203)–(204). Then, taking the deriva-
tive with respect to Q2 we obtain the full probability density associated with q∗ > q2 as

P >
X1,X2

(Q1,Q2) =
∫ +i∞

−i∞

ds1ds2

(2π i)2
e(s1−1)Q1+(s2−1)Q21J (s1,2X1)(s2 − 1)I (s2,2X21), (210)

since the derivative with respect to Q2 of the first term in the right hand side of (201)
vanishes.

We now consider the second contribution, p<, associated with the intersection q∗ be-
tween both parabolas, Px1,c1 and Px2,c2 , being in the range q1 < q∗ < q2. Proceeding as for
(55) and (200) it reads as

p<
x1,x2

(0 ≤ q ′
1 ≤ q1, c1;q ′

2 ≥ q2, c2)dc1dc2

= lim
q±→±∞

∫
dψ−dv−Kx1,c1(0,0,0;q−,ψ−, v−)

×
∫

dψ1dv1[Kx1,c1(0,0,0;q1,ψ1, v1) − Kx1,c1+dc1(0,0,0;q1,ψ1, v1)]

×
∫

dψ∗dv∗Kx1,c1(q1,ψ1, v1;q∗,ψ∗, v∗)
∫

dψ2dv2Kx2,c2(q∗,ψ∗, v∗;q2,ψ2, v2)

×
∫

dψ+dv+[Kx2,c2(q2,ψ2, v2;q+,ψ+, v+) − Kx2,c2+dc2(q2,ψ2, v2;q+,ψ+, v+)],
(211)
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which we must integrate over both c1 and c2. We can note that it satisfies the boundary
conditions

lim
q2→q+

1

p<
x1,x2

(q1;q ′
2 ≥ q2) → 0, and lim

q2→+∞p<
x1,x2

(0 ≤ q ′
1 ≤ q1;q ′

2 ≥ q2) = 0. (212)

Using again (17), (20), we obtain

p<
x1,x2

(0 ≤ q ′
1 ≤ q1;q ′

2 ≥ q2)

= e
û21
γ − q2

γ 2

∫
dr1du1dr∗du∗dr2du2dr3dr4H∞(r3, û1)

× �(q1; r3,−û1; r1, u1)G(q∗ − q1; r1, u1; r∗, u∗)

× G(q2 − q∗; r∗, u∗ − û21; r2, u2)
∂H∞
∂r2

(r2, u2). (213)

Next, taking again the derivative with respect to q1 and using the forward and backward
equations (22), (37), gives

p<
x1,x2

(q1;q ′
2 ≥ q2)

= e
û21
γ − q2

γ 2

∫
du1dr∗du∗dr2du2dr3dr4H∞(r3, û1)u1�(q1; r3,−û1;0, u1)

× G(q∗ − q1;0, u1; r∗, u∗)G(q2 − q∗; r∗, u∗ − û21; r2, u2)
∂H∞
∂r2

(r2, u2). (214)

As for the derivation of (208), using the explicit expressions of G,�, and H∞, and the
results of Appendices A and B, as well as the property (28), we obtain

P <
X1,X2

(Q1,Q
′
2 ≥ Q2) = 2X21e

2X21−Q2

∫ Q2

Q1

dQ∗
∫ +i∞

−i∞

ds1dsds2

(2π i)3
es1Q1+s(Q∗−Q1)+s2(Q2−Q∗)

× J (s1,2X1)
1

s2 − 1
[L(1, s;2X21) − L(s2, s;2X21)], (215)

with

L(s1, s2;2X) = 1

2X
e− 2

3 (s
3/2
1 −s

3/2
2 )2X/(s1−s2), whence L(s, s;2X) = 1

2X
e−√

s2X. (216)

We now have three inverse Laplace transforms because of the three terms �GG in (214).
The integration over Q∗ is associated with r4 in (214) and c2 in (211) (q∗ being related to
c2 through (81)). It gives a factor [esQ21 − es2Q21 ]/(s − s2). Then, choosing for instance a
contour such that �(s2) > �(s) > 1, we can integrate the first term over s2, which gives zero
by pushing the contour to the right, �(s2) → +∞, and the second term over s, which gives
the contribution associated with the pole at s = s2. This yields

P <
X1,X2

(Q1,Q
′
2 ≥ Q2) = 2X21e

2X21

∫ +i∞

−i∞

ds1ds2

(2π i)2
e(s1−1)Q1+(s2−1)Q21

× J (s1,2X1)
1

s2 − 1
[L(1, s2;2X21) − L(s2, s2;2X21)]. (217)
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We can check that (217) agrees with the constraints (212). Then, taking the derivative with
respect to Q2 we obtain the probability density

P <
X1,X2

(Q1,Q2) = 2X21e
2X21

∫ +i∞

−i∞

ds1ds2

(2π i)2
e(s1−1)Q1+(s2−1)Q21

× J (s1,2X1)[L(s2, s2;2X21) − L(1, s2;2X21)]. (218)

Finally, combining (210) and (218) we find that two terms cancel out and we are left with
the total probability density (82).
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